21.09.2019

Абсолютная пропускная способность СМО. Пример решения. Модели систем массового обслуживания


Краткая теория

Пусть в n-канальную систему массового обслуживания (СМО) поступает с интенсивностью простейший поток требований. Длительность обслуживания распределена по показательному закону со средним временем обслуживания . Если же все каналы обслуживания заняты, то вновь поступившее требование становится в очередь за ранее поступившими не обслуженными требованиями. Освободившийся канал приступает к обслуживанию очередного требования из очереди. Определим основные характеристики работы такой системы. Так как число требований, стоящих в очереди, может быть бесконечно большим, то и число состояний системы также может быть бесконечно большим.

Вероятность свободного состояния системы:

Последнее выражение получено при условии , которое является условием стационарности СМО. В случае система не справляется с обслуживанием, очередь неограниченно возрастает. Отношение обозначается через и называется уровнем загрузки системы:

Определим основные характеристики многоканальной СМО с ожиданием. Вероятность получения отказа равна нулю. Относительная пропускная способность -это величина, которая дополняет вероятность отказа до единицы: . Абсолютная пропускная способность . Определим среднее число занятых каналов: каждый занятый канал обслуживает в единицу времени в среднем заявок, а вся система - заявок. Тогда:

Коэффициент занятости каналов обслуживания:

Образование очереди возможно, когда вновь пост пившее требование застанет в системе не менее n требований, т. е. когда в системе будет находиться , , требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме вероятностей , Отсюда вероятность образования очереди:

Среднее число заявок в очереди можно вычислить как математическое ожидание, складывая произведения возможного числа заявок на вероятность того, что число заявок будет в очереди:

Среднее число заявок, связанных с системой:

Определим среднее время ожидания заявки в очереди . Очередь образуется, если все каналов заняты. Так как интенсивность обслуживания , то поток освобожденных каналов имеет интенсивность . Если заявка поступила в момент, когда заняты все каналов и очереди нет, то время ожидания составит в среднем , а если застанет одно требование в очереди, то , и так далее. Среднее время ожидания заявок в очереди найдем, суммируя произведения среднего времени ожидания на соответствующую вероятность:

Среднее время пребывания заявок в системе:

Формулы Литтла:

Среднее число простаивающих каналов обслуживания:

Коэффициент простоя каналов:

Пример решения задачи

Условие задачи

На строительном складе работают четыре кладовщика. Поток посетителей имеет с интенсивностью 2 заявки в минуту. Время обслуживания имеет показательное распределение со средним значением 1,5 минуты на заявку. Определить показатели работы склада.

Если вам необходима платная помощь в учебе с решением задач, об этом подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Как заказать решение задач по методам оптимальных решений...

Решение задачи

Отсюда следует, что вероятность того, что все четыре кладовщика простаивают, равна 0,05. Определим другие показатели работы системы.

Абсолютная пропускная способность склада, т. е. количество обслуживаемых в единицу времени требовании, (заявки в минуту). Среднее число занятых кладовщиков . Вероятность образования очереди, т. е. вероятность того, что в момент обращения заказчика все четыре кладовщика заняты:

Среднее число заявок в очереди:

Среднее время простаивания в очереди:

Среднее число заявок в системе:

Среднее время пребывания заявки в системе:

Среднее число простаивающих кладовщиков:

Если сроки со сдачей контрольной работы поджимают, то тогда за деньги на сайте можно выполнить вашу контрольную работу по методам оптимальных решений .

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Многоканальная СМО с отказами
Приведены необходимые теоретические сведения, в частности формулы Эрланга, а также образец решения задачи по теме "Многоканальная система массового обслуживания с отказами". Подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с отказами - вероятность отказа и вероятность обслуживания, абсолютная пропускная способность системы и среднее число каналов, занятых обслуживанием заявки.

Сетевое планирование - график работ
На примере решения задачи рассмотрены вопросы построения сетевого графика работ, нахождение критического пути и критического времени. Также показано вычисление параметров и резервов событий и работ - ранних и поздних сроков, общих (полных) и частных резервов.

Межотраслевая модель Леонтьева
На примере решения задачи рассмотрена межотраслевая модель Леонтьева. Показано вычисление матрицы коэффициентов прямых материальных затрат, матрицы «затраты-выпуск», матрицы коэффициентов косвенных затрат, векторов конечного потребления и валового выпуска.

Простейшая одноканальная модель. Такой моделью с вероятност­ными входным потоком и процедурой обслуживания является мо­дель, характеризуемая показательным распределением как длитель­ностей интервалов между поступлениями требований, так и дли­тельностей обслуживания. При этом плотность распределения дли­тельностей интервалов между поступлениями требований имеет вид

(1)

где - интенсивность поступления заявок в систему.

Плотность распределения длительностей обслуживания:

, (2)

где - интенсивность обслуживания.

Потоки заявок и обслуживаний простейшие.

Пусть система работает с отказами. Необходимо определить абсолютную и относительную пропускную способность системы.

Представим данную систему массового обслуживания в виде графа (рис.1), у которого имеются два состояния:

S 0 - канал свободен (ожидание);

S 1 - канал занят (идет обслуживание заявки).

Рис. 1. Граф состояний одноканальной СМО с отказами

Обозначим вероятности состояний:

P 0 (t) - вероятность состояния «канал свободен»;

Р 1 (t) - вероятность состояния «канал занят».

По размеченному графу состояний (рис. 1) составим систему дифференциальных уравнений Колмогорова для вероятностей со­стояний:

(3)

Система линейных дифференциальных уравнений (3) имеет решение с учетом нормировочного условия = 1. Реше­ние данной системы называется неустановившимся, поскольку оно непосредственно зависит от t и выглядит следующим образом:

(4)

(5)

Нетрудно убедиться, что для одноканальной СМО с отказами вероятность Р 0 (t) есть не что иное, как относительная пропускная способность системы q.

Действительно, Р 0 - вероятность того, что в момент t канал сво­боден и заявка, пришедшая к моменту t, будет обслужена, а следо­вательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно , т. е.

q = . (6)

По истечении большого интервала времени () дости­гается стационарный (установившийся) режим:

Зная относительную пропускную способность, легко найти абсолютную. Абсолютная пропускная способность (А) - среднее число, которое может обслужить система массового обслуживания в единицу времени:

Вероятность отказа в обслуживании заявки будет равна вероят­ности состояния «канал занят»:

Данная величина может быть интерпретирована как сред­няя доля не обслуженных заявок среди поданных.

Пример 1. Пусть одноканальная СМО с отказами представ­ляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность по­тока автомобилей = 1,0 (автомобиль в час). Средняя продолжи­тельность обслуживания - 1,8 часа. Поток автомобилей и поток обслуживании являются простейшими.

Требуется определить в установившемся режиме предельные значения:

относительной пропускной способности q;

абсолютной пропускной способности А;

вероятности отказа .

Сравните фактическую пропускную способность СМО с номи­нальной, которая была бы, если бы каждый автомобиль обслужи­вался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Решение

1. Определим интенсивность потока обслуживания:

2. Вычислим относительную пропускную способность:

Величина q означает, что в установившемся режиме система бу­дет обслуживать примерно 35% прибывающих на пост ЕО автомо­билей.

3. Абсолютную пропускную способность определим по формуле:

1 0,356 = 0,356.

Это означает, что система (пост ЕО) способна осуществить в среднем 0,356 обслуживания автомобилей в час.

3. Вероятность отказа:

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

4. Определим номинальную пропускную способность системы:

(автомобилей в час).

Оказывается, что в 1,5 раза больше, чем фак­тическая пропускная способность, вычисленная с учетом случай­ного характера потока заявок и времени обслуживания.

Одноканальная СМО с ожиданием. Система массового обслужи­вания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью . Интенсивность потока обслуживания равна (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок). Длительность обслужива­ния - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2.

Рис. 2. Граф состояний одноканальной СМО с ожиданием

(схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S 0 - канал свободен;

S 1 - канал занят (очереди нет);

S 2 - канал занят (одна заявка стоит в очереди);

……………………

S n - канал занят (n - 1 заявок стоит в очереди);

…………………...

S N - канал занят (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

п - номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид

(11)

Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допу­скаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входно­го потока, т. е. не отношением

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N- 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

А = q 𝝀; (15)

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

среднее число заявок (клиентов) в очереди (длина очереди):

L q = (1 - P N)W q . (19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики пред­ставляет собой одноканальную СМО. Число стоянок для автомо­билей, ожидающих проведения диагностики, ограничено и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 𝝀 = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживании автомобилей:

.

2. Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей 𝝀 и µ, т. е.

3. Вычислим финальные вероятности системы:

4. Вероятность отказа в обслуживании автомобиля:

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

А = 𝝀 q = 0,85 0,842 = 0,716 (автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

L q = (1 - P N)W q = 0,85 (1 - 0,158) 1,423 = 1,02.

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев отк = 0,158).

Одноканальная СМО с ожиданием без ограничения на вмести­мость блока ожидания (т. е. ). Остальные условия функцио­нирования СМО остаются без изменений.

Стационарный режим функционирования данной СМО суще­ствует при для любого n = 0, 1, 2,... и когда 𝝀< µ. Система алгебраических уравнений, описывающих работу СМО при для любого п =0,1,2,…, имеет вид

Решение данной системы уравнений имеет вид

Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

среднее число находящихся в системе клиентов (заявок) на об­служивание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

средняя продолжительность пребывания клиента в очереди:

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероят­ностных характеристик:

Вероятности состояний системы (поста диагностики);

Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди);

Среднюю продолжительность пребывания автомобиля в сис­теме (на обслуживании и в очереди);

Среднее число автомобилей в очереди на обслуживании;

4. Средняя продолжительность пребывания клиента в системе:

5. Среднее число автомобилей в очереди на обслуживание:

6. Средняя продолжительность пребывания автомобиля в очереди:

7. Относительная пропускная способность системы:

т. е. каждая заявка, пришедшая в систему, будет обслужена.

8 . Абсолютная пропускная способность:

A = q = 0,85 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего, интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота т возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

т = λP N .

В нашем примере при N=3 + 1= 4 и ρ = 0,893,

т = λ Р 0 ρ 4 = 0,85 0,248 0,8934 = 0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 0,134 = 1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.


Похожая информация.


На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение:
Определяем тип СМО. Фраза «На станцию» говорит об единственном устройстве обслуживания, т.е. для решения используем формулы для одноканальной СМО.
Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди».
Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.

Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:

  1. Интенсивность потока обслуживания:
  1. Интенсивность нагрузки .

ρ = λ t обс = 0.5 2 = 1

Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя канала).


Следовательно, 20% в течение часа канал будет не занят, время простоя равно t пр = 12 мин.

  1. Доля заявок, получивших отказ .

Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

  1. Относительная пропускная способность .

Доля обслуживаемых заявок, поступающих в единицу времени:
Q = 1 - p отк = 1 - 0 = 1

Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час.
Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час.
Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

4. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

4.1. Классификация систем массового обслуживания и их показатели эффективности

Системы, в которых в случайные моменты времени возникают заявки на обслуживание и имеются устройства для обслуживания этих заявок, называются системами массового обслуживания (СМО).

СМО могут быть классифицированы по признаку организации обслуживания следующим образом:

Системы с отказами не имеют очередей.

Системы с ожиданием имеют очереди.

Заявка, поступившая в момент, когда все каналы обслуживания заняты:

Покидает систему с отказами;

Становится в очередь на обслуживание в системах с ожиданием при неограниченной очереди или на свободное место при ограниченной очереди;

Покидает систему с ожиданием при ограниченной очереди, если в этой очереди нет свободного места.

В качестве меры эффективности экономической СМО рассматривают сумму потерь времени:

На ожидание в очереди;

На простои каналов обслуживания.

Для всех видов СМО используются следующие показатели эффективности :

- относительная пропускная способность - это средняя доля поступающих заявок, обслуживаемых системой;

- абсолютная пропускная способность - это среднее число заявок, обслуживаемых системой в единицу времени;

- вероятность отказа - это вероятность того, что заявка покинет систему без обслуживания;

- среднее число занятых каналов - для многоканальных СМО.

Показатели эффективности СМО рассчитываются по формулам из специальных справочников (таблиц). Исходными данными для таких расчетов являются результаты моделирования СМО.

4.2. Моделирование системы массового обслуживания:

основ­ные параметры, граф состояний

При всем многообразии СМО они имеют общие черты , которые позволяют унифицировать их моделирование для нахождения наиболее эффективных вариантов организации таких систем .

Для моделирования СМО необходимо иметь следующие исходные данные:

Основные параметры;

Граф состояний.

Результатами моделирования СМО являются вероятности ее состояний, через которые выражаются все показатели ее эффективности.

Основные параметры для моделирования СМО включают:

Характеристики входящего потока заявок на обслуживание;

Характеристики механизма обслуживания.

Рассмотрим характеристики потока заявок .

Поток заявок - последовательность заявок, поступающих на обслуживание.

Интенсивность потока заявок - среднее число заявок, поступающих в СМО в единицу времени.

Потоки заявок бывают простейшими и отличными от простейших.

Для простейших потоков заявок используются модели СМО.

Простейшим , или пуассоновским называется поток, являющийся стационарным , одинарным и в нем отсутствуют последействия .

Стационарность означает неизменность интенсивности поступления заявок с течением времени.

Одинарным поток заявок является в том случае, когда за малый промежуток времени вероятность поступления более чем одной заявки близка к нулю.

Отсутствие последействия заключается в том, что число заявок, поступивших в СМО за один интервал времени, не влияет на количество заявок, полученных за другой интервал времени.

Для отличных от простейших потоков заявок используются имитационные модели.

Рассмотрим характеристики механизма обслуживания .

Механизм обслуживания характеризуется:

- числом каналов обслуживания ;

Производительностью канала, или интенсивностью обслуживания - средним числом заявок, обслуживаемых одним каналом в единицу времени;

Дисциплиной очереди (например, объемом очереди , порядком отбора из очереди в механизм обслуживания и т. п.).

Граф состояний описывает функционирование системы обслуживания как переходы из одного состояния в другое под действием потока заявок и их обслуживания.

Для построения графа состояний СМО необходимо:

Составить перечень всех возможных состояний СМО;

Представить перечисленные состояния графически и отобразить возможные переходы между ними стрелками;

Взвесить отображенные стрелки, т. е. приписать им числовые значения интенсивностей переходов, определяемые интенсивностью потока заявок и интенсивностью их обслуживания.

4.3. Вычисление вероятностей состояний

системы массового обслуживания


Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:

где - вероятность того, что система находится в состоянии

- интенсивность перехода, или среднее число переходов системы в единицу времени из состояния в состояние .

Используя эту систему уравнений, а также уравнение

вероятность любого -ого состояния можно вычислить по следующему общему правилу :

вероятность нулевого состояния рассчитывается как

а затем берется дробь, в числителе которой стоит произведение всех интенсивностей потоков по стрелкам, ведущим слева направо от состояния до состояния а в знаменателе - произведение всех интенсивностей по стрелкам, идущим справа налево от состояния до состояния , и эта дробь умножается на рассчитанную вероятность

Выводы по четвертому разделу

Системы массового обслуживания имеют один или несколько каналов обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания со схемой «гибели и рождения» осуществляется по общему правилу.

Вопросы для самопроверки

Какие системы называются системами массового обслуживания?

Как классифицируются системы массового обслуживания по признаку их организации?

Какие системы массового обслуживания называются системами с отказами, а какие – с ожиданием?

Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты?

Что рассматривают в качестве меры эффективности экономической системы массового обслуживания?

Какие используются показатели эффективности системы массового обслуживания?

Что служит исходными данными для расчетов показателей эффективности систем массового обслуживания?

Какие исходные данные необходимы для моделирования систем массового обслуживания?

Через какие результаты моделирования системы массового обслуживания выражают все показатели ее эффективности?

Что включают основные параметры для моделирования систем массового обслуживания?

Чем характеризуются потоки заявок на обслуживание?

Чем характеризуются механизмы обслуживания?

Что описывает граф состояний системы массового обслуживания

Что необходимо для построения графа состояний системы массового обслуживания?

Что представляет собой граф состояний системы массового обслуживания со схемой «гибели и рождения»?

Чему равно число состояний в графе состояний системы массового обслуживания?

Какой вид имеет система уравнений для определения вероятностей состояний системы массового обслуживания?

По какому общему правилу вычисляется вероятность любого состояния системы массового обслуживания?

Примеры решения задач

1. Построить граф состояний системы массового обслуживания и привести основные зависимости ее показателей эффективности.

а) n-канальная СМО с отказами (задача Эрланга)

Основные параметры:

Каналов ,

Интенсивность потока ,

Интенсивность обслуживания .

Возможные состояния системы:

Все каналов заняты ( заявок в системе).

Граф состояний:

Относительная пропускная способность ,

Вероятность отказа ,

Среднее число занятых каналов .

б) n-канальная СМО с m-ограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналы заняты, две заявки в очереди;

Все каналы заняты, заявок в очереди.

Граф состояний:

в) Одноканальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Канал занят, ноль заявок в очереди;

Канал занят, одна заявка в очереди;

...................................................................................

Канал занят, заявка в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

,

Среднее время пребывания заявки в системе ,

,

,

Абсолютная пропускная способность ,

Относительная пропускная способность .

г) n-канальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналов заняты ( заявок в системе), ноль заявок в очереди;

Все каналы заняты, одна заявка в очереди;

....................................................................................

Все каналы заняты, заявок в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

Среднее число занятых каналов ,

Среднее число заявок в системе ,

Среднее число заявок в очереди ,

Среднее время пребывания заявки в очереди .

2. Вычислительный центр имеет три ЭВМ. В центр поступает на решение в среднем четыре задачи в час. Среднее время решения одной задачи - полчаса. Вычислительный центр принимает и ставит в очередь на решение не более трех задач. Необходимо оценить эффективность центра.

РЕШЕНИЕ. Из условия ясно, что имеем многоканальную СМО с ограниченной очередью:

Число каналов ;

Интенсивность потока заявок (задача / час);

Время обслуживания одной заявки (час / задача), интенсивность обслуживания (задача / час);

Длина очереди .

Перечень возможных состояний:

Заявок нет, все каналы свободны;

Один канал занят, два свободны;

Два канала заняты, один свободен;

Три канала заняты;

Три канала заняты, одна заявка в очереди;

Три канала заняты, две заявки в очереди;

Три канала заняты, три заявки в очереди.

Граф состояний:

Рассчитаем вероятность состояния :

Показатели эффективности:

Вероятность отказа (все три ЭВМ заняты и три заявки стоят в очереди)

Относительная пропускная способность

Абсолютная пропускная способность

Среднее число занятых ЭВМ

3. (Задача с использованием СМО с отказами.) В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы (* - заданное значение ).

РЕШЕНИЕ. По условию задачи , тогда .

1) Вероятность простоя каналов обслуживания:

,

3) Вероятность обслуживания:

4) Среднее число занятых обслуживанием каналов:

.

5) Доля каналов, занятых обслуживанием:

6) Абсолютная пропускная способность:

При . Произведя аналогичные расчеты для , получим

Так как , то произведя расчеты для , получим

ОТВЕТ. Вероятность того, что при деталь пройдет ОТК необслуженной, составляет 21%, и контролеры будут заняты обслуживанием на 53%.

Чтобы обеспечить вероятность обслуживания более 95%, необходимо не менее пяти контролеров.

4. (Задача с использованием СМО с неограниченным ожиданием.) Сберкасса имеет трех контролеров-кассиров () для обслуживания вкладчиков . Поток вкладчиков поступает в сберкассу с интенсивностью чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика мин.

Определить характеристики сберкассы как объекта СМО.

РЕШЕНИЕ. Интенсивность потока обслуживания , интенсивность нагрузки .

1) Вероятность простоя контролеров-кассиров в течение рабочего дня (см. предыдущую задачу №3):

.

2) Вероятность застать всех контролеров-кассиров занятыми:

.

3) Вероятность очереди:

.

4) Среднее число заявок в очереди:

.

5) Среднее время ожидания заявки в очереди:

мин.

6) Среднее время пребывания заявки в СМО:

7) Среднее число свободных каналов:

.

8) Коэффициент занятости каналов обслуживания:

.

9) Среднее число посетителей в сберкассе:

ОТВЕТ. Вероятность простоя контролеров-кассиров равна 21% рабочего времени , вероятность посетителю оказаться в очереди составляет 11,8%, среднее число посетителей в очереди 0,236 чел., среднее время ожидания посетителями обслуживания 0,472 мин.

5. (Задача с применением СМО с ожиданием и с ограниченной длиной очереди.) Магазин получает ранние овощи из пригородных теплиц. Автомобили с грузом прибывают в разное время с интенсивностью машин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обрабатывать и хранить товар, привезенный двумя автомашинами (). В магазине работают три фасовщика (), каждый из которых в среднем может обрабатывать товар с одной машины в течение ч. Продолжительность рабочего дня при сменной работе составляет 12 ч.

Определить, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была .

РЕШЕНИЕ. Определим интенсивность загрузки фасовщиков:

Авт./дн.

1) Найдем вероятность простоя фасовщиков при отсутствии машин (заявок):

причем 0!=1,0.

2) Вероятность отказа в обслуживании:

.

3) Вероятность обслуживания:

Так как , произведем аналогичные вычисления для , получим), при этом вероятность полной обработки товара будет .

Задания для самостоятельной работы

Для каждой из следующих ситуаций определить:

a) к какому классу относится объект СМО;

b) число каналов ;

c) длину очереди ;

d)интенсивность потока заявок ;

e) интенсивность обслуживания одним каналом;

f) количество всех состояний объекта СМО.

В ответах указать значения по каждому пункту, используя следующие сокращения и размерности:

a) ОО – одноканальная с отказами; МО – многоканальная с отказами; ОЖО – одноканальная с ожиданием с ограниченной очередью; ОЖН - одноканальная с ожиданием с неограниченной очередью; МЖО – многоканальная с ожиданием с ограниченной очередью; МЖН - многоканальная с ожиданием с неограниченной очередью;

b) =… (единиц);

c) =… (единиц);

d) =ххх/ххх (единиц /мин);

e) =ххх/ххх (единиц /мин);

f) (единиц).

1. Дежурный по администрации города имеет пять телефонов. Телефонные звонки поступают с интенсивностью 90 заявок в час, средняя продолжительность разговора составляет 2 мин.

2. На стоянке автомобилей возле магазина имеются 3 места, каждое из которых отводится под один автомобиль. Автомобили прибывают на стоянку с интенсивностью 20 автомобилей в час. Продолжительность пребывания автомобилей на стоянке составляет в среднем 15 мин. Стоянка на проезжей части не разрешается.

3. АТС предприятия обеспечивает не более 5 переговоров одновременно. Средняя продолжительность разговоров составляет 1 мин. На станцию поступает в среднем 10 вызовов в сек.

4. В грузовой речной порт поступает в среднем 6 сухогрузов в сутки. В порту имеются 3 крана, каждый из которых обслуживает 1 сухогруз в среднем за 8 ч. Краны работают круглосуточно. Ожидающие обслуживания сухогрузы стоят на рейде.

5. В службе «Скорой помощи» поселка круглосуточно дежурят 3 диспетчера, обслуживающие 3 телефонных аппарата. Если заявка на вызов врача к больному поступает, когда диспетчеры заняты, то абонент получает отказ. Поток заявок составляет 4 вызова в минуту. Оформление заявки длится в среднем 1,5 мин.

6. Салон-парикмахерская имеет 4 мастера. Входящий поток посетителей имеет интенсивность 5 человек в час. Среднее время обслуживания одного клиента составляет 40 мин. Длина очереди на обслуживание считается неограниченной.

7. На автозаправочной станции установлены 2 колонки для выдачи бензина. Около станции находится площадка на 2 автомашины для ожидания заправки. На станцию прибывает в среднем одна машина в 3 мин. Среднее время обслуживания одной машины составляет 2 мин.

8. На вокзале в мастерской бытового обслуживания работают три мастера. Если клиент заходит в мастерскую, когда все мастера заняты, то он уходит из мастерской, не ожидая обслуживания. Среднее число клиентов, обращающихся в мастерскую за 1 ч, равно 20. Среднее время, которое затрачивает мастер на обслуживание одного клиента, равно 6 мин.

9. АТС поселка обеспечивает не более 5 переговоров одновременно. Время переговоров в среднем составляет около 3 мин. Вызовы на станцию поступают в среднем через 2 мин.

10. На автозаправочной станции (АЗС) имеются 3 колонки. Площадка при станции, на которой машины ожидают заправку, может вместить не более одной машины, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится, а проезжает на соседнюю станцию. В среднем машины прибывают на станцию каждые 2 мин. Процесс заправки одной машины продолжается в среднем 2,5 мин.

11. В небольшом магазине покупателей обслуживают два продавца. Среднее время обслуживания одного покупателя – 4 мин. Интенсивность потока покупателей – 3 человека в минуту. Вместимость магазина такова, что одновременно в нем в очереди могут находиться не более 5 человек. Покупатель, пришедший в переполненный магазин, когда в очереди уже стоят 5 человек, не ждет снаружи и уходит.

12. Железнодорожную станцию дачного поселка обслуживает касса с двумя окнами. В выходные дни, когда население активно пользуется железной дорогой, интенсивность потока пассажиров составляет 0,9 чел./мин. Кассир затрачивает на обслуживание пассажира в среднем 2 мин.

Для каждой из указанных в вариантах СМО интенсивность потока заявок равна и интенсивность обслуживания одним каналом . Требуется:

Составить перечень возможных состояний;

Построить граф состояний по схеме "гибели и размножения".

В ответе указать для каждой задачи:

Количество состояний системы;

Интенсивность перехода из последнего состояния в предпоследнее.

Вариант № 1

1. одноканальная СМО с очередью длиной в 1 заявку

2. 2-канальная СМО с отказами (задача Эрланга)

3. 31-канальная СМО с 1-ограниченной очередью

5. 31-канальная СМО с неограниченной очередью

Вариант № 2

1. одноканальная СМО с очередью длиной в 2 заявки

2. 3-канальная СМО с отказами (задача Эрланга)

3. 30-канальная СМО с 2-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 30-канальная СМО с неограниченной очередью

Вариант № 3

1. одноканальная СМО с очередью длиной в 3 заявки

2. 4-канальная СМО с отказами (задача Эрланга)

3. 29-канальная СМО с 3-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 29-канальная СМО с неограниченной очередью

Вариант № 4

1. одноканальная СМО с очередью длиной в 4 заявки

2. 5-канальная СМО с отказами (задача Эрланга)

3. 28-канальная СМО с 4-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 28-канальная СМО с неограниченной очередью

Вариант № 5

1. одноканальная СМО с очередью длиной в 5 заявок

2. 6-канальная СМО с отказами (задача Эрланга)

3. 27-канальная СМО с 5-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 27-канальная СМО с неограниченной очередью

Вариант № 6

1. одноканальная СМО с очередью длиной в 6 заявок

2. 7-канальная СМО с отказами (задача Эрланга)

3. 26-канальная СМО с 6-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 26-канальная СМО с неограниченной очередью

Вариант № 7

1. одноканальная СМО с очередью длиной в 7 заявок

2. 8-канальная СМО с отказами (задача Эрланга)

3. 25-канальная СМО с 7-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 25-канальная СМО с неограниченной очередью

Вариант № 8

1. одноканальная СМО с очередью длиной в 8 заявок

2. 9-канальная СМО с отказами (задача Эрланга)

3. 24-канальная СМО с 8-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 24-канальная СМО с неограниченной очередью

Вариант № 9

1. одноканальная СМО с очередью длиной в 9 заявок

2. 10-канальная СМО с отказами (задача Эрланга)

3. 23-канальная СМО с 9-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 23-канальная СМО с неограниченной очередью

Вариант № 10

1. одноканальная СМО с очередью длиной в 10 заявок

2. 11-канальная СМО с отказами (задача Эрланга)

3. 22-канальная СМО с 10-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 22-канальная СМО с неограниченной очередью

1) одноканальная СМО

В предельном (стационарном) режиме система уравнений Колмогорова:

Учитывая нормировочное условие p 0 + p 1 = 1, найдем:

которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность системы q и вероятность отказа P отк:

Абсолютная пропускная способность: .

Задача 1. Известно, что заявки в ателье поступают с интенсивностью?=90 (заявок в час), а средняя продолжительность разговора по телефону t об = 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение.

Интенсивность потока обслуживания?= 1/ t об =1/2 = 0,5(1/мин) = 30 (1/ч).

Относительная пропускная способность СМО q = 30/(30+90) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P отк = 0,75. Абсолютная пропускная способность СМО: Q = 90*0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки.

Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

2) многоканальная СМО

Система уравнений Колмогорова имеет вид:


В стационарном режиме:

Разрешим систему (1) относительно неизвестных p 0 , p 1 ,..., p m . Из первого уравнения:

Из второго с учетом (2):

Аналогично из третьего, с учетом (2) и (3):

и вообще, для любого k ? m:

Введем обозначение:

Определяет среднее число требований, поступающих в СМО за среднее время обслуживания одной заявки (приведенная плотность потока заявок).

Формула (6) выражает все вероятности p k через p 0 . Воспользуемся условием:

Подставляя (7) в (6), получим, 0 ? k ? m. (8)

Формулы (7) и (8) называют формулами Эрланга. Полагая в формуле (8) k = m, получим вероятность отказа

Относительная пропускная способность (вероятность того, что заявка будет обслужена):

Формулы Эрланга и их следствия (9), (10) выведены для случая показательного закона распределения времени обслуживания. Но исследования последних лет показали, что эти формулы остаются справедливыми при любом законе распределения времени обслуживания, лишь бы входной поток был простейшим. Также формулами Эрланга можно пользоваться (с известным приближением) и в случае, когда поток заявок отличается от простейшего (например, является стационарным потоком с ограниченным последействием). Наконец, формулами Эрланга можно приближенно пользоваться и в случае, когда СМО допускает ожидание заявки в очереди, но когда срок ожидания мал по сравнению со средним временем обслуживания одной заявки.

Абсолютная пропускная способность:

Среднее число занятых каналов есть математическое ожидание числа занятых каналов:

или или, учитывая (11) и (5)

При большом числе каналов обслуживания применяют следующие формулы, которые также называются формулами Эрланга:

При больших значениях i:

функция Лапласа.

Вероятность отказа: (9")

Относительная пропускная способность

Среднее число занятых каналов:

Задача 2. В условиях предыдущей задачи определить оптимальное число телефонных номеров в ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (5) ? = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора t об = 2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n = 2, 3, 4,... и определим по формулам (7), (10), (11) для получаемой n-канальной СМО характеристики обслуживания. Например, при n = 2

Значения характеристик СМО представим в таблице:

По условию оптимальности q ? 0,9, следовательно, в ателье необходимо установить 5 телефонных номеров (в этом случае q = 0,9). При этом в час будут обслуживаться в среднем 80 заявок (Q = 80,1), а среднее число занятых телефонных номеров (каналов)

Задача 3. Автоматическая телефонная станция обеспечивает не более 120 переговоров одновременно. Средняя продолжительность разговора 60 секунд, а вызовы поступают в среднем через 0,5 секунды. Рассматривая такую станцию как многоканальную систему обслуживания с отказами и простейшим входным потоком, определить: а) среднее число занятых каналов, б) относительную пропускную способность, в) среднее время пребывания вызова на станции с учетом того, что разговор может и не состояться.

Решение. Имеем: m = 120; ? = 1/0,5 = 2; ? = 1/60; ? = ?/? = 120.

Используя таблицы функции Лапласа, получаем:

так как? есть интенсивность входного потока (число заявок в единицу времени), то?t ср = и.

2 . СМО с ожиданием и ограниченным временем ожидания.

Имеется m каналов обслуживания, входной поток - простейший с интенсивностью?, время обслуживания и время ожидания - СВ, распределенные по экспоненциальному закону с параметрами? и? соответственно.

Если занято i каналов и i ? m, то в силу независимости их функционирования интенсивность обслуживания возрастает в i раз: ? i,i-1 = i?. При возникновении очереди каждое состояние рассматриваемой СМО характеризуется занятостью каналов обслуживания. Поэтому интенсивность освобождения каналов становится постоянной u = m?.

Закон распределения времени ожидания определяется интенсивностью? ухода из очереди при наличии в ней одной заявки. В силу независимости поступления заявок (см. определение простейшего потока) интенсивность, с которой заявки отказываются от обслуживания и уходят из очереди, равна r? (для очереди длины r ? 1). Т.о., плотность вероятности перехода системы из состояния S m+r в состояние S m+r-1 равна сумме интенсивностей освобождения каналов обслуживания и отказа от обслуживания: ? m+r,m+r-1 = m? + r?.

Составим уравнения Колмогорова:


i=1,..., m-1, r ? 0.

Если на длину очереди не накладывать ограничений, то система обыкновенных дифференциальных уравнений (1) является бесконечной.

Если в начальный момент времени t = 0 рассматриваемая система находилась в одном из своих возможных состояний S j , то начальные условия для нее выглядят следующим образом.




© 2024
womanizers.ru - Журнал современной женщины