29.09.2019

Чувствительные нейроны спинного мозга. Функции нейрона. Какую функцию выполняют нейроны. Функция двигательного нейрона


Нейрон (нервная клетка) - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов. По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы. Нейрон, или нервная клетка - это функциональная единица нервной системы. Нейроны восприимчивы к раздражению, то есть способны возбуждаться и передавать электрические импульсы от рецепторов к эффекторам. По направлению передачи импульса различают афферентные нейроны (сенсорные нейроны), эфферентные нейроны (двигательные нейроны) и вставочные нейроны. Каждый нейрон состоит из сомы (клетки диаметром от 3 до 100 мкм, содержащей ядро и другие клеточные органеллы, погруженные в цитоплазму) и отростков - аксонов и дендритов. На основании числа и расположения отростков нейроны делятся на униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные нейроны .

Основными функциями нервной клетки является восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция)

Особенности осуществления этих функций позволяют разделить все нейроны ЦНС на две большие группы:

1) Клетки, передающие информацию на большие расстояния (из одного отдела ЦНС в другой, от периферии к центру, от центра к исполнительному органу). Это крупные афферентные и эфферентные нейроны, имеющие на своём теле и отростках большое количество синапсов, как тормозящих, так и возбуждающих, и способные к сложным процессам переработки поступающих через них влияний.

2) Клетки, обеспечивающие межнейроальные связи в пределах органических нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.). Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синоптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.

Воспринимающая функция нейрона. Все раздражения, поступающие в нервную систему, передаются на нейрон через определённые участки его мембраны, находящиеся в области синаптических контактов. 6.2 Интегративная функция нейрона. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки.

Эффекторная функция нейрона. С появлением ПД, который в отличие от местных изменений мембранного потенциала (ВПСП и ТПСП) является распространяющимся процессом, нервный импульс начинает проводиться от тела нервной клетки вдоль по аксону к другой нервной клетке или рабочему органу, т.е. осуществляется эффекторная функция нейрона.

    Синапсы в ЦНС.

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку. Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы).

2. По развитию в онтогенезе: стабильные и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту : тормозные и возбуждающие.

4. По механизму передачи сигнала : электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора – холинергические, адренергическис, дофаминергические

Электрические синапсы . В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм.

    Рефлекторная дуга. Классификация рефлексов.

Рефлекс - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы.Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни. Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга. Их можно классифицировать на различные группы по ряду признаков.

1. По биологическому значению

А.)пищевые

Б.)оборонительные

В.)половые

Г.)ориентировочные

Д.)позно-тонические (рефлексы положения тела в пространстве)

Е.)локомоторные (рефлексы передвижения тела в пространстве)

2. По расположению рецепторов , раздражение которых вызывает данный рефлекторный акт

А.)экстерорецептивный рефлекс - раздражение рецепторов внешней поверхноcти тела

Б.)висцеро- или интерорецептивный рефлекс - возникающий при раздражении рецепторов внутренних органов и сосудов

В.)проприорецептивный (миотатический) рефлекс - раздражение рецепторов скелетных мышц, суставов, сухожилий

3. По месту расположения нейронов, участвующих в рефлексе

А.)спинальные рефлексы - нейроны расположены в спинном мозге

Б.)бульбарные рефлексы - осуществляемые при обязательном участии нейронов продолговатого мозга

В.)мезэнцефальные рефлексы - осуществляемые при участии нейронов среднего мозга

Г.)диэнцефальные рефлексы - участвуют нейроны промежуточного мозга

Д.)кортикальные рефлексы - осуществляемые при участии нейронов коры больших полушарий головного мозга

Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)

Соматической нервной системы, иннервирующие скелетную иускулатуру

Вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.

Рефлекторная дуга состоит из пяти отделов:

1.Рецепторов, воспринимающих раздражение и отвечающих на него возбуждением. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).

2.Чувствительного (центростремительного, афферентного) нервного волокна, передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.

3.Нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре

происходит синаптическое соединение чувствительного и двигательного нейрона.

1.Двигательного (центробежного, эфферентного) нервного волокна, несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.

2.Эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

    Понятие о нервном центре.

Нервный центр - совокупность нервных клеток, более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса, в регуляции той или иной функции организма или одной из сторон этой функции. В простейших случаях нервный центр состоит из нескольких нейронов, образующих обособленный узел (ганглий).

В каждый Н. ц. по входным каналам - соответствующим нервным волокнам - поступает в виде импульсов нервных информация от органов чувств или от др. Н. ц. Эта информация перерабатывается нейронами Н. ц., отростки (Аксоны) которых не выходят за его пределы. Конечным звеном служат нейроны, отростки которых покидают Н. ц. и доставляют его командные импульсы к периферическим органам или др. Н. ц. (выходные каналы). Нейроны, составляющие Н. ц., связаны между собой посредством возбуждающих и тормозных синапсов и образуют сложные комплексы, так называемые нейронные сети. Наряду с нейронами, которые возбуждаются только в ответ на приходящие нервные сигналы или действие разнообразных химических раздражителей, содержащихся в крови, в состав Н. ц. могут входить нейроны-ритмоводители, обладающие собственным автоматизмом; им присуща способность периодически генерировать нервные импульсы.

Локализацию Н. ц. определяют на основании опытов с раздражением, ограниченным разрушением, удалением или перерезкой тех или иных участков головного или спинного мозга. Если при раздражении данного участка центральной нервной системы возникает та или иная физиологическая реакция, а при его удалении или разрушении она исчезает, то принято считать, что здесь расположен Н. ц., влияющий на данную функцию или участвующий в определённом рефлексе.

    Свойства нервных центров.

Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма.

Для проведения возбуждения через нервные центры характерны следующие, особенности:

1. Однострочное проведение, оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2.Центральная задержка проведения возбуждения т.е по НЦ возбуждения идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой т.к больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса, это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Эго объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются 11 и мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне. Второе, генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения

нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие - это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например, проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных ИМПУЛЬСОВ, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессор метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

    Торможение в ЦНС.

Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне - действия другого более сильного раздражителя. Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон - один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр. В ЦНС выделяют следующие механизмы торможения:

1| Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов, т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксосоматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия, НЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются, ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП: небольшая. В результате возникшей гиперполяризации возбудимость нейрона падает. Проведение нервных, импульсов через него прекращается. Алкалоид стрихнин может связываться с глицериновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.

2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны.

Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.

3. Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.

    Принципы координации рефлекторных процессов.

Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных ДУГ и нервных центров. Координация рефлекторной деятельности это такое взаимодействие нервных центров и проходящих по ним нервных импульсов, которое обеспечивает согласованную деятельность органов и систем организма. Она осуществляется с помощью следующих процессов:

1. Временное и пространственное облегчение. Это усиление рефлекторной реакции при действии ряда последовательных раздражителей или одновременном их воздействии на несколько рецептивных полей. Объясняется явлением суммации в нервных центрах.

2. Окклюзия явление противоположное облегчению. Когда рефлекторная реакция на два или более сверхпороговых раздражителя меньше, чем ответы на их раздельное воздействие. Оно связано с конвергенцией нескольких возбуждающих импульсов на одном нейроне.

3. Принцип общего конечного пути. Разработан Ч. Шеррингтоном. В основе его лежит явление конвергенции. Согласно этому принципу на одном эфферентном мотонейроне могут образовывать синапсы нескольких афферентных, входящих в несколько рефлекторных дуг. Этот нейрон называется общим конечным путем и участвует в нескольких рефлекторных реакциях. Если взаимодействие этих рефлексов приводит к усилению обшей рефлекторной реакции, такие рефлексы называются союзными. Если же между афферентными сигналами происходит борьба за мотонейрон - конечный путь, то антагонистическими. В результате этой борьбы второстепенные рефлексы ослабляются, а жизненно важным освобождается общий конечный путь.

4. Реципрокное торможение. Обнаружено Ч. Шеррингтоном. Это явление торможения одного Центра в результате возбуждения другого. Т.е. в этом случае тормозится антагонистический центр. Например при возбуждении центров сгибания левой ноги по реципрокному механизму тормозятся центры мышц разгибателей этой же ноги и центры сгибателей правой. В реципрокных взаимоотношениях находятся, центры вдоха и выдоха продолговатого мозга. центры сна и бодрствования и т.д.

5. Принцип доминанты. Открыт А.А. Ухтомским. Доминанта - это преобладающий очаг возбуждения в ЦНС, подчиняющий себе другие НЦ. Доминантный центр обеспечивает комплекс рефлексов, которые необходимы в данный момент для достижения определенной цели. При некоторых условиях возникают питьевая, пищевая, оборонительная, половая и др. доминанты. Свойствами доминантного очага являются повышенная возбудимость, стойкость возбуждения, высокая способность к суммации, инертность. Эти свойства обусловлены явлениями облегчения, иррадиации, с одновременным повышением активности вставочных тормозных нейронов, которые тормозят нейроны других центров.

6. Принцип обратной афферентации. Результаты рефлекторного акта воспринимаются нейронами обратной афферентации и информация от них поступает обратно в нервный центр. Там они сравниваются с параметрами возбуждения и рефлекторная реакция корректируется.

    Методы исследований функций ЦНС.

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3.Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. Электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.

б. Регистрация биопотенциалов нервных различных центров, используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро в метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. Метод внутримозгового введения веществ с помощью микроинофореза.

7. Хронорефлексометрия - определение времени рефлексов.

    Рефлексы спинного мозга.

Рефлекторная функция. Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного, мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы.

Классификация нейронов

Существует большое многообразие нейронов ЦНС. Поэтому предложены и различные варианты их класси­фикации. Чаще всего эта классификация осуществляется по трем признакам - морфологическим, функциональ­ным и биохимическим.

Морфологическая классификация нейронов учитыва­ет количество отростков у нейронов и подразделяет все нейроны на три типа - униполярные, биполярные и мультиполярные.

Униполярные нейроны (от лат. унус - один; сино­нимы - одноотростчатые, или однополюсные, нейроны) имеют один отросток. По мнению одних исследователей, в нервной системе человека и других млекопитающих нейроны этого типа не встречаются. Однако некоторые авторы полагают, что униполярные нейроны отмечаются у человека в период раннего эмбрионального развития, а в постнатальном онтогенезе они встречаются в мезэнцефалическом ядре тройничного нерва (обеспечивают проприоцептивную чувствительность жевательных мышц). Ряд исследователей к униполярным клеткам относят амакриновые нейроны сетчатки глаза и межклубочковые ней­роны обонятельной луковицы.

Биполярные нейроны (синонимы - двухотросчатые, или двухполюсные, нейроны) имеют два отростка - ак­сон и дендрит, обычно отходящие от противоположных полюсов клетки. В нервной системе человека собственно биполярные нейроны встречаются в основном в перифе­рических частях зрительной, слуховой и обонятельной систем, например, биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев. Биполярные ней­роны дендритом связаны с рецептором, аксоном - с нейроном следующего уровня организации соответствую­щей сенсорной системы.

Однако значительно чаще в ЦНС человека и других животных встречается разновидность биполярных нейро­нов - так называемые псевдоуниполярные, или ложноуниполярные , нейроны. У них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится на дендрит и аксон: первый идет с периферии от рецепторов, второй направляется в ЦНС. Эти клетки встречаются в сенсор­ных спинальных и краниальных ганглиях. Они обеспечи­вают восприятие болевой, температурной, тактильной, проприоцептивной, барорецептивной и вибрационной сиг­нализации.

Мультиполярные нейроны имеют один аксон и мно­го (2 и более) дендритов. Они наиболее распространены в нервной системе человека. Описано до 60-80 вариан­тов этих клеток. Однако все они представляют разновидности веретенообразных, звездчатых, корзинчатых, грушевидных и пирамидных клеток.

По длине аксона выделяют клетки Гольджи I типа (с длинным аксоном) и клетки Гольджи II типа (с ко­ротким аксоном).

С точки зрения локализации нейронов их можно разделить на нейроны ЦНС, т.е. находящиеся в спинном (спинальные нейроны) и головном мозге (бульбарные, мезенцефальные, церебеллярные, гипоталамические, тала-мические, корковые), а также за пределами ЦНС, т.е. входящие в состав периферической нервной системы - это нейроны вегетативных ганглиев, а также нейроны, составляющие основу метасимпатического отдела вегета­тивной нервной системы.



Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответ­ствии с их местом в рефлекторной дуге) на три типа: аф­ферентные (чувствительные), эфферентные (двигательные) и ассоциативные.

1. Афферентные нейроны (синонимы - чувствитель­ные, рецепторные, центростремительные), как правило, являются ложноуниполярными нервными клетками. Тела этих нейронов располагаются не в ЦНС, а в спинномоз­говых узлах или чувствительных узлах черепно-мозговых нервов. Один из отростков, отходящий от тела нервной клетки, следует на периферию, к тому пли иному органу и заканчивается там сенсорным рецептором, который спо­собен трансформировать энергию внешнего стимула (раздражения) в нервный импульс. Второй отросток на­правляется в ЦНС (спинной мозг) в составе задних ко­решков спинномозговых нервов или соответствующих чув­ствительных волокон черепно-мозговых нервов. Как пра­вило, афферентные нейроны имеют небольшие размеры и хорошо разветвленный на периферии дендрит. Функции афферентных нейронов тесно связаны с функциями сен­сорных рецепторов. Таким образом, афферентные нейро­ны генерируют нервные импульсы под влиянием измене­ний внешней или внутренней среды

Часть нейронов, принимающих участие в обработке сенсорной информации, которые можно рассматривать как афферентные нейроны высших отделов мозга, приня­то делить в зависимости от чувствительности к действию раздражителей на моносенсорные, бисенсорные и поли­сенсорные.

Моносенсорные нейроны располагаются чаще в пер­вичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры полу­шарий головного мозга реагирует только на световое раз­дражение сетчатки глаза.

Моносенсорные нейроны подразделяют функциональ­но по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры больших полушарий головного мозга могут реаги­ровать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальны­ми. Нейроны, реагирующие на два разных тона, называ­ются бимодальными, на три и более - полимодальными.

Бисенсорные нейроны чаще располагаются во вторич­ных зонах коры какого-либо анализатора и могут реаги­ровать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры больших полушарий головного мозга реагируют на зрительные и слуховые раздражения.

Полисенсорные нейроны - это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.

2. Эфферентные нейроны (синонимы - двигатель­ные, моторные, секреторные, центробежные, сердечные, сосудодвигательные и пр.) предназначены для передачи информации от ЦНС на периферию, к рабочим органам. Например, эфферентные нейроны двигательной зоны коры большого мозга - пирамидные клетки - посыла­ют импульсы к альфа-мотонейронам передних рогов спинного мозга, т.е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь аль­фа-мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам.

По своему строению эфферентные нейроны - это мультиполярные нейроны, тела которых находятся в се­ром веществе ЦНС (или на периферии в вегетативных уз­лах различных порядков). Аксоны этих нейронов про­должаются в виде соматических или вегетативных не­рвных волокон (периферических нервов) к соответствую­щим рабочим органам, в том числе к скелетным и глад­ким мышцам, а также к многочисленным железам. Ос­новной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скорос­тью проведения возбуждения.

Эфферентные нейроны разных отделов коры боль­ших полушарий связывают между собой эти отделы по аркуатным связям. Такие связи обеспечивают внутриполушарные и межполушарные отношения. Все нисходящие пути спинного мозга (пирамидный, руброспинальный, ретикулоспинальный и т.д.) образованы аксонами эфферен­тных нейронов соответствующих отделов ЦНС. Нейроны автономной нервной системы, например, ядер блуждаю­щего нерва, боковых рогов спинного мозга также отно­сятся к эфферентным нейронам.

3. Вставочные нейроны (синонимы - интернейро­ны, контактные, ассоциативные, коммуникативные, объединяющие, замыкательные, проводниковые, кон­дукторные) осуществляют передачу нервного импульса с афферентного (чувствительного) нейрона на эфферен­тный (двигательный) нейрон. Суть этого процесса со­стоит в передаче полученного афферентным нейроном сигнала эфферентному нейрону для исполнения в виде ответной реакции организма. И. П. Павлов определил сущность этого как «явление нервного замыкания».

Вставочные нейроны располагаются в пределах серо­го вещества ЦНС. По своему строению - это мультипо­лярные нейроны. Считается, что в функциональном отно­шении это наиболее важные нейроны ЦНС, так как на их долю приходится 97 %, а по некоторым данным, - даже 98-99 % от общего числа нейронов ЦНС. Область влияния вставочных нейронов определяется их строением, в том числе длиной аксона и числом коллатералей. На­пример, многие вставочные нейроны имеют аксоны, ко­торые заканчиваются на нейронах своего же центра, обеспечивая, прежде всего, их интеграцию.

Одни вставочные нейроны получают активацию от нейронов других центров и затем распространяют эту ин­формацию на нейроны своего центра. Это обеспечивает усиление влияния сигнала за счет его повторения в па­раллельных путях и удлиняет время сохранения инфор­мации в центре. В итоге центр, куда пришел сигнал, по­вышает надежность воздействия на исполнительную структуру.

Другие вставочные нейроны получают активацию от коллатералей эфферентных нейронов своего же центра и затем передают эту информацию назад в свой же центр, образуя обратные связи. Так организуются реверберирующие сети, позволяющие длительно сохранять информа­цию в нервном центре.

Вставочные нейроны по своей функции могут быть возбуждающими или тормозными . При этом возбужда­ющие нейроны могут не только передавать информа­цию с одного нейрона на другой, но и модифицировать передачу возбуждения, в частности, усиливать ее эф­фективность. Например, в коре большого мозга имеют­ся «медленные» пирамидные нейроны, которые влияют на активность «быстрых» пирамидных нейронов.

Очевидно, что среди вставочных нейронов можно так­же выделить командные нейроны, песймекерные, гормонпродуцирующие нейроны (например, нейроны тубероинфундибулярной области гипоталамуса), потребностно-мотивационные, гностические и многие другие виды нейронов.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор - ацетилхолин), адренергические (медиатор - норадреналин), серотонинергические (медиатор - серотонин), дофаминергические (медиатор - дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота - ГАМК), пуринергические (медиа­тор - АТФ и его производные), пептидергические (меди­аторы - субстанция Р, энкефалины, эндорфины, вазоактивный интестинальный пептид, холецистокинин, нейротензин, бомбезин и другие нейропептиды). В некото­рых нейронах терминали содержат одновременно два типа нейромедиатора, а также нейромодуляторы.

Распределение нейронов, использующих различные ме­диаторы, в нервной системе неравномерно. Нарушение вы­работки некоторых медиаторов в отдельных структурах мозга связывают с патогенезом ряда нервно-психических заболеваний. Так, содержание дофамина снижено при пар­кинсонизме и повышено при шизофрении, снижение уров­ня норадреналина и серотонина типично для депрессивных состояний, а их повышение - для маниакальных.

Нейроны, продуцирующие гормоны, можно также разделить по группам, в зависимости от природы проду­цируемого ими гормона (кортиколиберин-, гонадолиберин-, тиролиберинпродуцирующие, пролактостатинпродуцирующие и другие).

Другие виды классификаций нейронов . Нервные клетки разных отделов нервной системы могут быть ак­тивными вне воздействия, т.е. обладают свойством автоматии. Их называют фоновоактивными нейронами. Дру­гие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение, т.е. они не обладают фоновой активностью.

Некоторые нейроны, по причине их особой значимо­сти в деятельности мозга, получили дополнительные на­звания по имени исследователя, впервые описавшего со­ответствующие нейроны. Среди них - пирамидные клет­ки Беца, локализованные в новой коре большого мозга; грушевидные клетки Пуркинье, клетки Гольджи, клетки Лугано (все - в составе коры мозжечка); тормозные клетки Реншоу (спинной мозг) и ряд других нейронов.

Функции нейрона как целого образования - это обеспечение информационных процессов в ЦНС, в том числе с помощью веществ-передатчиков (нейромедиаторов). Нейроны как специализированные клетки осуществ­ляют прием, кодирование, обработку, хранение и переда­чу информации. Нейроны формируют управляющие (регу­лирующие) команды для различных внутренних органов и для скелетных мышц (благодаря чему совершаются разнообразные локомоции), а также обеспечивают реали­зацию всех форм психической деятельности - от эле­ментарных до самых сложных, включая мышление и речь. Все это обеспечивается за счет уникальной способ­ности нейрона генерировать электрические разряды и пе­редавать информацию с помощью специализированных окончаний - синапсов. Однако реализация всех функций нейрона возможна лишь при совместной работе нейронов. Поэтому решающим моментом в деятельности нейрона является его способность к генерации потенциалов дей­ствия, а также его способность воспринимать потенциалы действия и медиаторы от других нейронов и передавать необходимую информацию другим нейронам. Все это особенно наглядно проявляется в том случае, когда ней­рон является компонентом нейронных объединений, в ча­стности - составной частью рефлекторной дуги (см. ниже). Реализация информационной функции происходит с участием всех отделов нейрона - дендритов, перикариона и аксона. При этом дендриты вместе с перикарионом специализируются на восприятии информации, аксоны (вместе с аксонным холмиком перикариона) - на пере­даче информации, а перикарион на принятии решения (в широком смысле этого слова). Кроме того, тело нейрона (сома, или перикарион), помимо информационной, выпол­няет трофическую функцию относительно своих отрост­ков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальнее перерезки, а, следовательно, и синапсов этих отростков. Сома обеспе­чивает также рост дендритов и аксона.

Как и все возбудимые клетки, нейроны имеют мембранный потенциал, природа которого, как уже отме­чалось выше, главным образом, обусловлена неравновес­ным распределением ионов К + . У большинства нейронов величина мембранного потенциала достигает 50-70 мВ. У фоновоактивных нейронов, т.е. обладающих спонтанной активностью, величина мембранного потенциала периоди­чески уменьшается (т.е. наблюдается спонтанная деполя­ризация), в результате чего при достижении критического уровня деполяризации происходит генерация потенциала действия. Однако большинство нейронов генерируют по­тенциалы действия лишь в ответ на воздействие сенсор­ного стимула. Пороговый потенциал в среднем для пери­кариона составляет примерно 20-35 мВ, для дендритов - он еще выше, зато в области аксонного холмика он со­ставляет всего 5-10 мВ. Таким образом, наиболее возбу­димым участком перикариона является аксонный холмик. Для потенциалов действия всех нейронов характерна от­носительно небольшая амплитуда, которая достигает 80-110 мВ. Потенциал действия по своей форме (при внут­риклеточном отведении) является пикообразным. Для него характерна кратковременность спайка (1-3 мс), вы­раженность следовой гиперполяризации (особенно это ти­пично в отношении мотонейронов спинного мозга), в ре­зультате чего нередко возбудимость нейрона понижается. Длительность абсолютной рефрактерной фазы для нейро­нов - сравнительно небольшая (в пределах 2-3 мс), что обеспечивает относительно высокий уровень лабильности нейронов. Вместе с тем, для нейронов характерна высо­кая утомляемость, что указывает на относительно огра­ниченные возможности нейронов к восстановлению. В то же время следует помнить, что большая продолжитель­ность жизни нейрона, связанная с отсроченным наступле­нием апоптоза, в определенной степени и обеспечивается способностью нейронов своевременно, а точнее, заблагов­ременно прекращать свою деятельность, не допуская ак­тивацию апоптоза.

Генерация потенциала действия, в частности фаза де­поляризации объясняется вхождением ионов Na + из вне­клеточной среды внутрь нейрона, а фаза реполяризации - выходом ионов К + , а также активацией работы Na + -K + -насоса. Нейроны также имеют кальциевые каналы, кото­рые в большей степени сконцентрированы в области пресинаптической мембраны аксонных терминалей. Здесь же содержится и Са 2+ -насос, обеспечивающий удаление ионов каль­ция из пресинаптического окончания во внеклеточную среду. Концентрация ионов Са 2+ во внеклеточной среде является важнейшим механизмом регуляции возбудимос­ти нейрона. Повышение уровня Са 2+ в крови (до опреде­ленных значений) снижает ее, а уменьшение - приводит к чрезмерному повышению возбудимости, что нередко со­провождается появлением спонтанной генерации потенци­алов действия и возникновением судорожного состояния. Такая зависимость возбудимости от ионов Са 2+ связана с наличием в мембране перикариона кальциевых каналов, а также Са 2+ -зависимых калиевых каналов. Когда в нейроне возрастает внутриклеточная концентрация ионов Са 2+ , то это вызывает активацию Са 2+ -зависмых калиевых каналов, что повышает проницаемость для ионов К + . Следствием этого является развитие выраженной следовой гиперпо­ляризации , которая наблюдается в период фазы реполя­ризации. Важно отметить, что сама по себе следовая ги­перполяризация играет важную роль в деятельности ней­рона. Это связано с тем, что в ответ на длительную депо­ляризацию, которая может возникнуть под влиянием се­рии приходящих к нейронам импульсов, нейрон обычно генерирует не одиночный потенциал, а серию потенциа­лов действия. Частота следования импульсов в этой серии определяется величиной следовой гиперполяризации - чем она выше, тем больше интервал между соседними по­тенциалами действия, т.е. тем реже они генерируются. Вот почему, например, максимальный ритм возбуждения в мотонейронах спинного мозга, у которых фаза гипер­поляризации длится 100-150 мс, составляет всего 40-50 Гц. В тоже время нейроны, у которых длительность фазы гиперполяризации небольшая (например, некоторые вставочные нейроны), могут выдавать вспышки разрядов с частотой до 1000 Гц.

Важным для физиологии нейрона является механизм поддержания концентрации ионов К + в межклеточной среде. Это связано с тем, что в ЦНС нейроны и их отро­стки окружены узкими щелеподобными внеклеточными пространствами (ширина щели не превышает обычно 15 нм). Поэтому во время генерации потенциала действия концентрация ионов К + в этих пространствах может су­щественно повыситься (вместо 4-5 мМ она может дости­гать 10 мМ), что приведет к нарушению деятельности нейрона, вплоть до генерации судорожных разрядов. Для того, чтобы предотвратить этот процесс клетки нейроглии, в частности, астроциты, берут на себя функцию по регуляции содержания ионов во внеклеточном простран­стве. В частности, при избыточном содержании ионов К + во внеклеточном пространстве глиальные клетки погло­щают их, а при недостаточном их содержании - выделя­ют эти ионы. Таким образом, астроциты выполняют фун­кции буферной системы в отношении ионов К + , Са 2+ и, вероятно, других ионов.

Многочисленные дендриты и плазматическая мембра­на перикариона богаты хеморецепторами, за счет кото­рых происходит восприятие сигналов, передаваемых с участием синапсов. Каждый нейрон имеет большое число синапсов, с учетом общего числа нейро­нов у человека, равного примерно 10 11 , (в этом случае суммарное число синаптических контактов между нейро­нами, как указывалось выше, приближается к астрономической цифре 10 15) обеспечивает возможность хранения в ЦНС до 10 19 еди­ниц информации. Это количество информации эквивалент­но практически всем знаниям, накопленным на сегодняш­ний день человечеством.

Важно также отметить, что за счет взаимодействия медиатора с рецептором на постинаптической мембране нейрона может возникать два процесса - деполяризация (возбуждающий постсинаптический потенциал) и гиперполяризапция (тормозной постсинаптический потенциал). Эти процессы интегрируются в пространстве и во време­ни (соответственно, пространственная и временная суммация) на мембране нейрона и тем самым либо порождают генерацию ПД на аксонном холмике, либо, наоборот, увеличивают МП(мембранный потенциал) и тем самым препятствуют возбужде­нию нейрона. Это явление, получившее название синаптического взаимодействия, играет исключительно важную роль в деятельности нейрона.

Относительно такого свойства нейрона как проводи­мость следует подчеркнуть, что все его компоненты - перикарион, дендриты и аксон - способны к проведению импульса. При этом для дендрита и, особенно, для аксона проведение возбуждения является основной функцией. Как правило, нейрон динамически поляризован, т.е. способен проводить нервный импульс только в одном на­правлении - от дендрита через тело клетки к аксону. Это явление называется ортодромным распространением воз­буждения. В отдельных случаях возможно антидромное распространение возбуждения, т.е. от аксона к перикариону и дендритам. В этом аспекте важно отметить, что бла­годаря коллатералям и наличию тормозных вставочных нейронов, ряд нейронов ЦНС может осуществлять так на­зываемое возвратное самоторможение - в период генера­ции ПД возбуждение от нейрона А распространяется по аксону к другому нейрону или органу, но одновременно возбуждение по коллатералям достигает тормозного ней­рона. Его активация приводит к торможению нейрона А.

С функциональ­ной точки зрения нейрон может находиться в трех ос­новных состояниях - 1) в состоянии покоя, 2) в состо­янии активности, или возбуждения, и 3) в состоянии торможения.

1). В состоянии покоя нейрон имеет стабильный уровень мембранного потенциала. В любой момент ней­рон готов возбудиться, т.е. генерировать потенциал дей­ствия, либо перейти в состояние торможения.

2). В состоянии активности, т.е. при возбуждении нейрон генерирует потенциал действия или чаще - груп­пу потенциалов действия (серия ПД, пачка ПД, вспышка возбуждения). Частота следования потенциалов действия внутри данной серии ПД, длительность этой серии, а так­же скважность (интервалы) между последовательными се­риями - все эти показатели широко варьируют, и явля­ются составляющей кода нейронов. Выше уже отмечалось, что важную роль в регуляции частоты импульсации имеют ионы Са 2+ и К + .

Чаще всего состояние активности индуцируется. Это, происходит за счет поступления импульсов к нейрону от других нейронов. Для некоторых нейронов активное со­стояние возникает спонтанно, т.е. автоматически, причем, чаще всего автоматия нейрона проявляется периодической генерацией серии импульсов. Примером таких нейронов-пейсмекеров , т.е. водителей ритма являются нейроны ды­хательного центра продолговатого мозга.

Нередко такие нейроны называют фоновоактивными нейронам. По характеру реакции на приходящие импуль­сы они делятся на тормозные и возбуждающие. Тормоз­ные нейроны урежают свою фоновую частоту разрядов в ответ на внешний сигнал, а возбуждающиеся - увеличи­вают частоту фоновой активности.

Существует как минимум три вида фоновой активно­сти нейронов - непрерывно-аритмичный, пачечный и групповой.

Непрерывно-аритмичный вид активности проявляется в том, что фоновоактивные нейроны генерируют импульсы непрерывно с некоторым замедлением или увеличением ча­стоты разрядов. Такие нейроны обычно обеспечивают то­нус нервных центров. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

Пачечный тип активности заключается в том, что нейроны выдают группу импульсов с коротким межим­пульсным интервалом, после этого наступает период мол­чания, а затем вновь генерируется пачка импульсов. Обычно межимпульсные интервалы в пачке равны при­близительно 1-3 мс, а интервал между пачками ПД со­ставляет 15-120 мс. Считается, что такой тип активности создает условия для проведения сигналов при снижении функциональных возможностей проводящих или воспри­нимающих структур мозга.

Групповая форма активности характеризуется апери­одическим появлением группы импульсов (межимпульс­ные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

3). Состояние торможения проявляется в том, что фоновоактивный нейрон или нейрон, получающий воз­буждающее воздействие извне, прекращает свою импуль­сную активность. В состояние торможения нейрон может переходить и из состояния покоя. Во всех случаях в ос­нове торможения лежит явление гиперполяризации ней­рона (это характерно для постсинаптического торможе­ния) или активное прекращение поступающей импульса­ции от других нейронов, что наблюдается в условиях пресинаптического торможения.

Представление о роли входящей информации для нейрона. Принятая дендритами входящая информация перерабатывается в теле нейрона, запуская серию метабо­лических (обменных) процессов. Часть этих процессов не­обходима для поддержания жизнедеятельности нейрона. Другая часть индуцированных обменных процессов преобразуется в ответ в виде генерации потенциалов дей­ствия, идущих к органу-мишени или к другому нейрону в виде серий импульсов определенной частоты. Третья часть процессов необходима для создания в нейроне сво­еобразного буфера для обеспечения постоянства выхода потенциалов действия из нейрона при количественных ко­лебаниях входа. При стойком повышении количества при­нимаемых импульсов аккумулируемый запас становится чрезмерным, соответственно, аксон повышает частоту своей импульсации, но не постепенно, а скачкообразно, как бы перескакивая на новый уровень активности, такой же относительно постоянный, как и предыдущий. Если перегрузка не ликвидируется, то возможны и дальнейшие скачкообразные увеличения частоты импульсации, а затем и повышение мощности импульсов. При недостатке по­ступающих стимулов в первую очередь исчерпывается ак­кумулированный запас - нейрон пытается сохранить по­стоянство режима ответов, т.е. выходной импульсации. При стойком и значительном снижении поступления «за­пасы» исчерпываются, и возникают скачкообразные изме­нения частоты аксональных импульсов, только в обрат­ном порядке - в сторону снижения. Снижение количе­ства входных стимулов ниже некоторого критического уровня приводит к тому, что нейрон не только не может организовать ответную реакцию, но и не располагает ре­сурсами для полноценного обеспечения собственной жизнедеятельности. Полное блокирование входных им­пульсов приводит к гибели нейрона. Изложенная гипоте­за в определенной степени согласуется с представлением Г. Сорохтина (60-е годы XX века) о негативном влиянии на деятельность нейронов дефицита поступающей инфор­мации (гипотеза о дефиците возбуждения).

Ведущей причиной, которая отличает мозга человека от мозга других представителей животного мира, является количественный состав нейро­нов мозга и характер их объединения.

Нервная ткань — основной структурный элемент нервной системы. В состав нервной ткани входят высокоспециализированные нервные клетки — нейроны , и клетки нейроглии , выполняющие опорную, секреторную и защитную функции.

Нейрон — это основная структурно-функциональная единица нервной ткани. Эти клетки способны принимать, обрабатывать, кодировать, передавать и хранить информацию, устанавливать контакты с другими клетками. Уникальными особенностями нейрона являются способность генерировать биоэлектрические разряды (импульсы) и передавать информацию по отросткам с одной клетки на другую с помощью специализированных окончаний — .

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков — нейромедиаторов: ацетилхолина, катехоламинов и др.

Число нейронов мозга приближается к 10 11 . На одном нейроне может быть до 10 000 синапсов. Если эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 10 19 ед. информации, т.е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, регулирующие единую функцию, образуют так называемые группы, ансамбли, колонки, ядра.

Нейроны различаются по строению и функции.

По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные ) нейроны, несущие возбуждение от рецепторов в , эфферентные , двигательные , мотонейроны (или центробежные), передающие возбуждение из ЦНС к иннервируемому органу, и вставочные , контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные нейроны.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в ЦНС и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относятся к мультиполярным (рис. 1). Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, а также находятся и во всех других отделах ЦНС. Они могут быть и биполярными, например нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Рис. 1. Строение нервной клетки:

1 — микротрубочки; 2 — длинный отросток нервной клетки (аксон); 3 — эндоплазматический ретикулум; 4 — ядро; 5 — нейроплазма; 6 — дендриты; 7 — митохондрии; 8 — ядрышко; 9 — миелиновая оболочка; 10 — перехват Ранвье; 11 — окончание аксона

Нейроглия

Нейроглия , или глия , — совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы.

Она обнаружена Р. Вирховым и названа им нейроглией, что обозначает «нервный клей». Клетки нейроглии заполняют пространство между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше нервных клеток; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нейронов. Отмечено, что при различных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в ЦНС.

Виды глиальных клеток

По характеру строения глиальных клеток и их расположению в ЦНС выделяют:

  • астроциты (астроглия);
  • олигодендроциты (олигодендроглия);
  • микроглиальные клетки (микроглия);
  • шванновские клетки.

Глиальные клетки выполняют опорную и защитную функции для нейронов. Они входят в структуру . Астроциты являются самыми многочисленными глиальными клетками, заполняющими пространства между нейронами и покрывающими . Они предотвращают распространение в ЦНС нейромедиаторов, диффундирующих из синаптической щели. В астроцитов имеются рецепторы к нейромедиаторам, активация которых может вызывать колебания мембранной разности потенциалов и изменения метаболизма астроцитов.

Астроциты плотно окружают капилляры кровеносных сосудов мозга, располагаясь между ними и нейронами. На этом основании предполагают, что астроциты играют важную роль в метаболизме нейронов, регулируя проницаемость капилляров для определенных веществ .

Одной из важных функций астроцитов является их способность поглотать избыток ионов К+, которые могут накапливаться в межклеточном пространстве при высокой нейронной активности. В областях плотного прилегания астроцитов формируются каналы щелевых контактов, через которые астроциты могут обмениваться различными ионами небольшого размера и, в частности, ионами К+ Это увеличивает возможности поглощения ими ионов К+ Неконтролируемое накопление ионов К+ в межнейронном пространстве приводило бы к повышению возбудимости нейронов. Тем самым астроциты, поглощая избыток ионов К+ из интерстициальной жидкости, предотвращают повышение возбудимости нейронов и формирование очагов повышенной нейронной активности. Появление таких очагов в мозге человека может сопровождаться тем, что их нейроны генерируют серии нервных импульсов, которые называют судорожными разрядами.

Астроциты принимают участие в удалении и разрушении нейромедиаторов, поступающих во внесинаптические пространства. Тем самым они предотвращают накопление в межнейрональных пространствах нейромедиаторов, которое могло бы привести к нарушению функций мозга.

Нейроны и астроциты разделены межклеточными щелями 15-20 мкм, называемыми интерстициальным пространством. Интерстициальные пространства занимают до 12-14% объема мозга. Важным свойством астроцитов является их способность поглощать из внеклеточной жидкости этих пространств СО2, и тем самым поддерживать стабильной рН мозга .

Астроциты участвуют в формировании поверхностей раздела между нервной тканью и сосудами мозга, нервной тканью и оболочками мозга в процессе роста и развития нервной ткани.

Олигодендроциты характеризуются наличием небольшого числа коротких отростков. Одной из их основных функций является формирование миелиновой оболочки нервных волокон в пределах ЦНС . Эти клетки располагаются также в непосредственной близости от тел нейронов, но функциональное значение этого факта неизвестно.

Клетки микроглии составляют 5-20% от общего количества глиальных клеток и рассеяны по всей ЦНС. Установлено, что антигены их поверхности идентичны антигенам моноцитов крови. Это свидетельствует об их происхождении из мезодермы, проникновении в нервную ткань во время эмбрионального развития и последующей трансформации в морфологически распознаваемые клетки микроглии. В связи с этим принято считать, что важнейшей функцией микроглии является защита мозга. Показано, что при повреждении нервной ткани в ней возрастает число фагоцитирующих клеток за счет макрофагов крови и активации фагоцитарных свойств микроглии. Они удаляют погибшие нейроны, глиальные клетки и их структрурные элементы, фагоцитируют инородные частицы.

Шванновские клетки формируют миелиновую оболочку периферических нервных волокон за пределами ЦНС. Мембрана этой клетки многократно обертывается вокруг , и толщина образующейся миелиновой оболочки может превысить диаметр нервного волокна. Длина миелинизированных участков нервного волокна составляет 1-3 мм. В промежутках между ними (перехваты Ранвье) нервное волокно остается покрытым только поверхностной мембраной, обладающей возбудимостью.

Одним из важнейших свойств миелина является его высокое сопротивление электрическому току. Оно обусловлено высоким содержанием в миелине сфингомиелина и других фосфолипидов, придающих ему токоизолирующие свойства. На участках нервного волокна, покрытых миелином, процесс генерации нервных импульсов невозможен. Нервные импульсы генерируются только на мембране перехватов Ранвье, что обеспечивает более высокую скорость проведения нервных импульсов но миелинизированным нервным волокнам в сравнении с немиелинизированными.

Известно, что структура миелина может легко нарушаться при инфекционных, ишемических, травматических, токсических повреждениях нервной системы. При этом развивается процесс демиелинизации нервных волокон. Особенно часто демиелинизация развивается при заболевании рассеянным склерозом. В результате демиелинизации скорость проведения нервных импульсов по нервным волокнам уменьшается, скорость доставки в мозг информации от рецепторов и от нейронов к исполнительным органам падает. Это может вести к нарушениям сенсорной чувствительности, нарушениям движений, регуляции работы внутренних органов и другим тяжелым последствиям.

Структура и функции нейронов

Нейрон (нервная клетка) является структурной и функциональной единицей .

Анатомическая структура и свойства нейрона обеспечивают выполнение его основных функций : осуществление метаболизма, получение энергии, восприятие различных сигналов и их обработка, формирование или участие в ответных реакциях, генерация и проведение нервных импульсов, объединение нейронов в нейронные цепи, обеспечивающие как простейшие рефлекторные реакции, так и высшие интегративные функции мозга.

Нейроны состоят из тела нервной клетки и отростков — аксона и дендритов.

Рис. 2. Строение нейрона

Тело нервной клетки

Тело (перикарион, сома) нейрона и его отростки на всем протяжении покрыты нейрональной мембраной. Мембрана тела клетки отличается от мембраны аксона и дендритов содержанием различных , рецепторов, наличием на ней .

В теле нейрона расположена нейроплазма и отграниченные от нее мембранами ядро, шероховатый и гладкий эндоплазматический ретикулум, аппарат Гольджи, митохондрии. В хромосомах ядра нейронов содержится набор генов, кодирующих синтез белков, необходимых для формирования структуры и осуществления функций тела нейрона, его отростков и синапсов. Это белки, выполняющие функции ферментов, переносчиков, ионных каналов, рецепторов и др. Некоторые белки выполняют функции, находясь в нейроплазме, другие — встраиваясь в мембраны органелл, сомы и отростков нейрона. Часть из них, например ферменты, необходимые для синтеза нейромедиаторов, путем аксонального транспорта доставляются в аксонную терминаль. В теле клетки синтезируются пептиды, необходимые для жизнедеятельности аксонов и дендритов (например, ростовые факторы). Поэтому при повреждении тела нейрона его отростки дегенерируют, разрушаются. Если же тело нейрона сохранено, а поврежден отросток, то происходит его медленное восстановление (регенерация) и восстановление иннервации денервированных мышц или органов.

Местом синтеза белков в телах нейронов является шероховатый эндоплазматический ретикулум (тигроидные гранулы или тела Ниссля) или свободные рибосомы. Содержание их в нейронах выше, чем в глиальных или других клетках организма. В гладком эндоплазматическом ретикулуме и аппарате Гольджи белки приобретают свойственную им пространственную конформацию, сортируются и направляются в транспортные потоки к структурам тела клетки, дендритов или аксона.

В многочисленных митохондриях нейронов в результате процессов окислительного фосфорилирования образуется АТФ, энергия которой используется для поддержания жизнедеятельности нейрона, работы ионных насосов и поддержания асимметрии ионных концентраций но обе стороны мембраны. Следовательно, нейрон находится в постоянной готовности не только к восприятию различных сигналов, но и к ответной реакции на них — генерации нервных импульсов и их использованию для управления функциями других клеток.

В механизмах восприятия нейронами различных сигналов принимают участие молекулярные рецепторы мембраны тела клетки, сенсорные рецепторы, образованные дендритами, чувствительные клетки эпителиального происхождения. Сигналы от других нервных клеток могут поступать к нейрону через многочисленные синапсы, образованные на дендритах или на геле нейрона.

Дендриты нервной клетки

Дендриты нейрона формируют дендритное дерево, характер ветвления и размер которого зависят от числа синаптических контактов с другими нейронами (рис. 3). На дендритах нейрона имеются тысячи синапсов, образованных аксонами или дендритами других нейронов.

Рис. 3. Синаптические контакты интернейрона. Стрелками слева показано поступление афферентных сигналов к дендритам и телу интернейрона, справа — направление распространения эфферентных сигналов интернейрона к другим нейронам

Синапсы могут быть гетерогенными как по функции (тормозные, возбуждающие), так и по типу используемого нейромедиатора. Мембрана дендритов, участвующая в образовании синапсов, является их постсинаптической мембраной, в которой содержатся рецепторы (лигандзависимые ионные каналы) к нейромедиатору, используемому в данном синапсе.

Возбуждающие (глутаматергические) синапсы располагаются преимущественно на поверхности дендритов, где имеются возвышения, или выросты (1-2 мкм), получившие название шипиков. В мембране шипиков имеются каналы, проницаемость которых зависит от трансмембранной разности потенциалов. В цитоплазме дендритов в области шипиков обнаружены вторичные посредники внутриклеточной передачи сигналов, а также рибосомы, на которых синтезируется белок в ответ на поступление синаптических сигналов. Точная роль шипиков остается неизвестной, но очевидно, что они увеличивают площадь поверхности дендритного дерева для образования синапсов. Шипики являются также структурами нейрона для получения входных сигналов и их обработки. Дендриты и шипики обеспечивают передачу информации от периферии к телу нейрона. Мембрана дендритов в покос поляризована благодаря асимметричному распределению минеральных ионов, работе ионных насосов и наличию в ней ионных каналов. Эти свойства лежат в основе передачи по мембране информации в виде локальных круговых токов (электротонически), которые возникают между постсинаптическими мембранами и граничащими с ними участками мембраны дендрита.

Локальные токи при их распространении по мембране дендрита затухают, но оказываются достаточными по величине для передачи на мембрану тела нейрона сигналов, поступивших через синаптические входы к дендритам. В мембране дендритов пока не выявлено потенциалзависимых натриевых и калиевых каналов. Она не обладает возбудимостью и способностью генерировать потенциалы действия. Однако известно, что по ней может распространяться потенциал действия, возникающий на мембране аксонного холмика. Механизм этого явления неизвестен.

Предполагается, что дендриты и шипики являются частью нейронных структур, участвующих в механизмах памяти. Количество шипиков особенно велико в дендритах нейронов коры мозжечка, базальных ганглиев, коры мозга. Площадь дендритного дерева и число синапсов уменьшаются в некоторых полях коры мозга пожилых людей.

Аксон нейрона

Аксон - отросток нервной клетки, не встречающийся в других клетках. В отличие от дендритов, число которых у нейрона различно, аксон у всех нейронов один. Его длина может достигать до 1,5 м. В месте выхода аксона из тела нейрона имеется утолщение — аксонный холмик, покрытый плазматической мембраной, которая вскоре покрывается миелином. Участок аксонного холмика, непокрытый миелином, называют начальным сегментом. Аксоны нейронов вплоть до своих конечных разветвлений покрыты миелиновой оболочкой, прерываемой перехватами Ранвье — микроскопическими безмиелиновыми участками (около 1 мкм).

На всем протяжении аксон (миелинизированного и немиелинизированного волокна) покрыт бислойной фосфолипидной мембраной со встроенными в нее белковыми молекулами, которые выполняют функции транспорта ионов, потенциалзависимых ионных каналов и др. Белки распределены равномерно в мембране немиелинизированного нервного волокна, а в мембране миелинизированного нервного волокна они располагаются преимущественно в области перехватов Ранвье. Поскольку в аксоплазме нет шероховатого ретикулума и рибосом, то очевидно, что эти белки синтезируются в теле нейрона и доставляются в мембрану аксона посредством аксонального транспорта.

Свойства мембраны, покрывающей тело и аксон нейрона , различны. Это различие касается прежде всего проницаемости мембраны для минеральных ионов и обусловлено содержанием различных типов . Если в мембране тела и дендритов нейрона превалирует содержание лигандзависимых ионных каналов (в том числе постсинаптических мембран), то в мембране аксона, особенно в области перехватов Ранвье, имеется высокая плотность потенциалзависимых натриевых и калиевых каналов.

Наименьшей величиной поляризации (около 30 мВ) обладает мембрана начального сегмента аксона. В более удаленных от тела клетки участках аксона величина трансмембранного потенциала составляет около 70 мВ. Низкая величина поляризации мембраны начального сегмента аксона обусловливает то, что в этой области мембрана нейрона обладает наибольшей возбудимостью. Именно сюда и распространяются по мембране тела нейрона с помощью локальных круговых электрических токов постсинаптические потенциалы, возникшие на мембране дендритов и тела клетки в результате преобразования в синапсах информационных сигналов, поступивших к нейрону. Если эти токи вызовут деполяризацию мембраны аксонного холмика до критического уровня (Е к), то нейрон ответит на поступление к нему сигналов от других нервных клеток генерацией своего потенциала действия (нервного импульса). Возникший нервный импульс далее проводится по аксону к другим нервным, мышечным или железистым клеткам.

На мембране начального сегмента аксона имеются шипики, на которых образуются ГАМК-ергические тормозные синапсы. Поступление сигналов по этим от других нейронов может предотвращать генерацию нервного импульса.

Классификация и виды нейронов

Классификация нейронов проводится как по морфологическим, так и по функциональным признакам.

По количеству отростков различают мультиполярные, биполярные и псевдоуниполярные нейроны.

По характеру связей с другими клетками и выполняемой функции различают сенсорные, вставочные и двигательные нейроны. Сенсорные нейроны называют также афферентными нейронами, а их отростки — центростремительными. Нейроны, выполняющие функцию передачи сигналов между нервными клетками, называют вставочными , или ассоциативными. Нейроны, аксоны которых образуют синапсы на эффекторных клетках (мышечных, железистых), относят к двигательным, или эфферентным , их аксоны называют центробежными.

Афферентные (чувствительные) нейроны воспринимают информацию сенсорными рецепторами, преобразуют ее в нервные импульсы и проводят к головного и спинного мозга. Тела чувствительных нейронов находятся в спинальных и черепно-мозговых . Это псевдоуниполярные нейроны, аксон и дендрит которых отходят от тела нейрона вместе и затем разделяются. Дендрит следует на периферию к органам и тканям в составе чувствительных или смешанных нервов, а аксон в составе задних корешков входит в дорсальные рога спинного мозга или в составе черепных нервов — в головной мозг.

Вставочные , или ассоциативные, нейроны выполняют функции переработки поступающей информации и, в частности, обеспечивают замыкание рефлекторных дуг. Тела этих нейронов располагаются в сером веществе головного и спинного мозга.

Эфферентные нейроны также выполняют функцию переработки поступившей информации и передачи эфферентных нервных импульсов от головного и спинного мозга к клеткам исполнительных (эффекторных) органов.

Интегративная деятельность нейрона

Каждый нейрон получает огромное количество сигналов через многочисленные синапсы, расположенные на его дендритах и теле, а также через молекулярные рецепторы плазматических мембран, цитоплазмы и ядра. В передаче сигналов используется множество различных типов нейромедиаторов, нейромодуляторов и других сигнальных молекул. Очевидно, что для формирования ответной реакции на одновременное поступление множества сигналов, нейрон должен обладать способностью их интегрировать.

Совокупность процессов, обеспечивающих обработку поступающих сигналов и формирование на них ответной реакции нейрона, входит в понятие интегративной деятельности нейрона.

Восприятие и обработка сигналов, поступающих к нейрону, осуществляется при участии дендритов, тела клетки и аксонного холмика нейрона (рис. 4).

Рис. 4. Интеграция сигналов нейроном.

Одним из вариантов их обработки и интеграции (суммирования) является преобразование в синапсах и суммирование постсинаптических потенциалов на мембране тела и отростков нейрона. Воспринятые сигналы преобразуются в синапсах в колебание разности потенциалов постсинаптической мембраны (постсинаптические потенциалы). В зависимости от типа синапса полученный сигнал может быть преобразован в небольшое (0,5-1,0 мВ) деполяризующее изменение разности потенциалов (ВПСП — синапсы на схеме изображены в виде светлых кружков) либо гиперполяризующее (ТПСП — синапсы на схеме изображены в виде черных кружков). К разным точкам нейрона могут поступать одновременно множество сигналов, часть из которых трансформируется в ВПСП, а другие — в ТПСП.

Эти колебания разности потенциалов распространяются с помощью локальных круговых токов по мембране нейрона в направлении аксонного холмика в виде волн деполяризации (на схеме белого цвета) и гиперполяризации (на схеме черного цвета), накладывающихся друг на друга (на схеме участки серого цвета). При этом наложении амплитуды волны одного направления суммируются, а противоположных — уменьшаются (сглаживаются). Такое алгебраическое суммирование разности потенциалов на мембране получило название пространственного суммирования (рис. 4 и 5). Результатом этого суммирования может быть либо деполяризация мембраны аксонного холмика и генерация нервного импульса (случаи 1 и 2 на рис. 4), либо ее гиперполяризация и предотвращение возникновения нервного импульса (случаи 3 и 4 на рис. 4).

Для того чтобы сместить разность потенциалов мембраны аксонного холмика (около 30 мВ) до Е к, ее надо деполяризовать на 10-20 мВ. Это приведет к открытию имеющихся в ней потенциалзависимых натриевых каналов и генерации нервного импульса. Поскольку при поступлении одного ПД и его преобразовании в ВПСП деполяризация мембраны может достигать до 1 мВ, а се распространение к аксонному холмику идет с затуханием, то для генерации нервного импульса требуетсяодновременное поступление к нейрону через возбуждающие синапсы 40-80 нервных импульсов от других нейронов и суммирование такого же количества ВПСП.

Рис. 5. Пространственная и временная суммация ВПСП нейроном; а — BПСП на одиночный стимул; и — ВПСП на множественную стимуляцию от разных афферентов; в — ВПСП на частую стимуляцию через одиночное нервное волокно

Если в это время к нейрону поступит некоторое количество нервных импульсов через тормозные синапсы, то его активация и генерация ответного нервного импульса будет возможной при одновременном увеличении поступления сигналов через возбуждающие синапсы. В условиях, когда сигналы, поступающие через тормозные синапсы вызовут гиперполяризацию мембраны нейрона, равную или превышающую по величине деполяризацию, вызванную сигналами, поступающими через возбуждающие синапсы, деполяризация мембраны аксонного холмика будет невозможна, нейрон не будет генерировать нервные импульсы и станет неактивным.

Нейрон осуществляет также временное суммирование сигналов ВПСП и ТПСП, поступающих к нему почти одновременно (см. рис. 5). Вызываемые ими изменения разности потенциалов в околосинаптических областях также могут алгебраически суммироваться, что и получило название временного суммирования.

Таким образом, каждый генерируемый нейроном нервный импульс, равно как и период молчания нейрона, заключает информацию, поступившую от множества других нервных клеток. Обычно чем выше частота поступающих к нейрону сигналов от других клеток, тем с большей частотой он генерирует ответные нервные импульсы, посылаемые им по аксону к другим нервным или эффекторным клеткам.

В силу того что в мембране тела нейрона и даже его дендритов имеются (хотя и в небольшом числе) натриевые каналы, потенциал действия, возникший на мембране аксонного холмика, может распространяться на тело и некоторую часть дендритов нейрона. Значение этого явления недостаточно ясно, но предполагается, что распространяющийся потенциал действия на мгновение сглаживает все имевшиеся на мембране локальные токи, обнуляет потенциалы и способствует более эффективному восприятию нейроном новой информации.

В преобразовании и интеграции сигналов, поступающих к нейрону, принимают участие молекулярные рецепторы. При этом их стимуляция сигнальными молекулами может вести через инициированные (G-белками, вторыми посредниками) изменения состояния ионных каналов, трансформации воспринятых сигналов в колебание разности потенциалов мембраны нейрона, суммированию и формированию ответной реакции нейрона в виде генерации нервного импульса или его торможению.

Преобразование сигналов метаботропными молекулярными рецепторами нейрона сопровождается его ответом в виде запуска каскада внутриклеточных превращений. Ответной реакцией нейрона в этом случае может быть ускорение общего метаболизма, увеличение образования АТФ, без которых невозможно повышение его функциональной активности. С использованием этих механизмов нейрон интегрирует полученные сигналы для улучшения эффективности своей собственной деятельности.

Внутриклеточные превращения в нейроне, инициированные полученными сигналами, часто ведут к усилению синтеза белковых молекул, выполняющих в нейроне функции рецепторов, ионных каналов, переносчиков. Увеличивая их количество, нейрон приспосабливается к характеру поступающих сигналов, усиливая чувствительность к более значимым из них и ослабляя — к менее значимым.

Получение нейроном ряда сигналов может сопровождаться экспрессией или репрессией некоторых генов, например контролирующих синтез нейромодуляторов пептидной природы. Поскольку они доставляются в аксонные терминали нейрона и используются в них для усиления или ослабления действия его нейромедиаторов на другие нейроны, то нейрон в ответ на полученные им сигналы может в зависимости от получаемой информации оказывать более сильное или более слабое влияние на контролируемые им другие нервные клетки. С учетом того что модулирующее действие нейропептидов способно продолжаться в течение длительного времени, влияние нейрона на другие нервные клетки также может продолжаться долго.

Таким образом, благодаря способности интегрировать различные сигналы нейрон может тонко реагировать на них широким спектром ответных реакций, позволяющих эффективно приспосабливаться к характеру поступающих сигналов и использовать их для регуляции функций других клеток.

Нейронные цепи

Нейроны ЦНС взаимодействуют друг с другом, образуя в месте контакта разнообразные синапсы. Возникающие при этом нейронные пени многократно увеличивают функциональные возможности нервной системы. К наиболее распространенным нейронным цепям относят: локальные, иерархические, конвергентные и дивергентные нейронные цепи с одним входом (рис. 6).

Локальные нейронные цепи образуются двумя или большим числом нейронов. При этом один из нейронов (1) отдаст свою аксонную коллатераль нейрону (2), образуя на его теле аксосоматический синапс, а второй — образует аксоном синапс на теле первого нейрона. Локальные нейронные сети могут выполнять функцию ловушек, в которых нервные импульсы способны длительно циркулировать по кругу, образованному несколькими нейронами.

Возможность длительной циркуляции однажды возникшей волны возбуждения (нервного импульса) за счет передачи но кольцевой структуре, экспериментально показал профессор И.А. Ветохин в опытах на нервном кольце медузы.

Круговая циркуляция нервных импульсов по локальным нейронным цепям выполняет функцию трансформации ритма возбуждений, обеспечивает возможность длительного возбуждения после прекращения поступления к ним сигналов, участвует в механизмах запоминания поступающей информации.

Локальные цепи могут выполнять также тормозную функцию. Примером ее является возвратное торможение, которое реализуется в простейшей локальной нейронной цепи спинного мозга, образуемой а-мотонейроном и клеткой Реншоу.

Рис. 6. Простейшие нейронные цепи ЦНС. Описание в тексте

При этом возбуждение, возникшее в мотонейроне, распространяется по ответвлению аксона, активирует клетку Реншоу, которая тормозит а-мотонейрон.

Конвергентные цепи образуются несколькими нейронами, на один из которых (обычно эфферентный) сходятся или конвергируют аксоны ряда других клеток. Такие цепи широко распространены в ЦНС. Например, на пирамидные нейроны первичной моторной коры конвергируют аксоны многих нейронов чувствительных полей коры. На моторные нейроны вентральных рогов спинного мозга конвергируют аксоны тысяч чувствительных и вставочных нейронов различных уровней ЦНС. Конвергентные цепи играют важную роль в интеграции сигналов эфферентными нейронами и осуществлении координации физиологических процессов.

Дивергентные цепи с одним входом образуются нейроном с ветвящимся аксоном, каждая из ветвей которого образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Это достигается за счет сильного ветвления (образования нескольких тысяч веточек) аксона. Такие нейроны часто встречаются в ядрах ретикулярной формации ствола мозга. Они обеспечивают быстрое повышение возбудимости многочисленных отделов мозга и мобилизацию его функциональных резервов.

Последнее обновление: 10/10/2013

Научно-популярная статья о нервных клетках: строение, сходства и различия нейронов с другими клетками, принцип передачи электрических и химических импульсов.

Нейрон - это нервная клетка, являющаяся основным строительным блоком для нервной системы. Нейроны во многом схожи с другими клетками, но существует одно важное отличие нейрона от других клеток: нейроны специализируются на передаче информации по всему телу.

Эти узкоспециализированные клетки способны на передачу информации и химическим, и электрическим путем. Существует также несколько различных видов нейронов, выполняющих различные функции в человеческом теле.

Сенсорные (чувствительные) нейроны доносят информацию, поступающую из клеток сенсорных рецепторов в мозг. Моторные (двигательные) нейроны передают команды от мозга к мускулам. Интернейроны (вставочные нейроны) способны сообщать информацию между разными нейронами в теле.

Нейроны в сравнении с другими клетками нашего тела

Сходства с другими клетками:

  • Нейроны, как и другие клетки имеют ядро, содержащее генетическую информацию
  • Нейроны и другие клетки окружены оболочкой, которая защищает клетку.
  • В клеточных телах нейронов и других клеток содержатся органеллы, поддерживающие жизнь клетки: митохондрии, аппарат Гольджи и цитоплазма.

Отличия, которые делают нейроны уникальными

В отличии от других клеток, нейроны перестают воспроизводится вскоре после рождения. Поэтому некоторые отделы мозга имеют большее количество нейронов при рождении, чем потом, т. к. нейроны гибнут, но не перемещаются. Несмотря на то, что нейроны не размножаются, учеными было доказано, что новые связи между нейронами появляются в течении всей жизни.

У нейронов есть мембрана, которая создана для того, чтобы посылать информацию в другие клетки. - это особые устройства, передающие и воспринимающие информацию. Межклеточные связи называются синапсами. Нейроны выпускают химические соединения (нейромедиаторы или нейротрансмиттеры) в синапсы, для коммуникации с другими нейронами.

Строение нейрона

Нейрон имеет всего три основные части: аксон, клеточное тело и дендриты. Однако, все нейроны немного различаются по форме, размеру, и характеристиками в зависимости от роли и функции нейрона. У одних нейронов всего несколько ветвей дендритов, другие сильно разветвляются для того, чтобы получать большое количество информации. У одних нейронов короткие аксоны, у других они могут быть достаточно длинными. Самый длинный аксон в человеческом теле тянется от нижней части позвоночника до большого пальца ноги, его длина - приблизительно 0,91 метра (3 фута)!

Больше о строении нейрона

Потенциал действия

Как нейроны посылают и воспринимают информацию? Чтобы нейроны сообщались, им необходимо передавать информацию и в самом нейроне, и от нейрона к следующему нейрону. Для этого процесса используются и электрические сигналы, и химические передатчики.

Дендриты воспринимают информацию от сенсорных рецепторов или других нейронов. Затем эта информация посылается в клеточное тело и на аксон. Как только эта информация покидает аксон, она передвигается по всей длине аксона, с помощью электрического сигнала, называемого потенциал действия.

Связь между синапсами

Сразу как электрический импульс достигает аксона, информация должна быть подана дендритам прилегающего нейрона через синаптическую щель к. В некоторых случаях, электрический сигнал может преодолеть щель между нейронами почти мгновенно и продолжить свое движение.

В других случаях, нейромедиаторам нужно передать информацию от одного нейрона к следующему. Нейромедиаторы - это химические передатчики, которые выпускаются из аксонов для пересечения синаптической щели и достигают рецепторов других нейронов. В процессе, называемом «обратный захват», нейромедиаторы прикрепляются к рецептору и абсорбируются нейроном для повторного использования.

Нейромедиаторы

Это неотъемлемая часть нашего ежедневного функционирования. Пока что точно неизвестно сколько существует нейромедиаторов, но ученые нашли уже более сотни этих химических передатчиков.

Какой эффект каждый из нейромедиаторов оказывает на тело? Что случается, когда болезнь или медицинские препараты сталкиваются с этими химическими передатчиками? Перечислим некоторые главные нейромедиаторы, их известные эффекты и заболевания, связанные с ними.

Наш с вами спинной мозг - это наиболее древнее в эволюционном плане образование нервной системы. Появляясь впервые у ланцетника, в процессе эволюции спинной мозг с его эфферентными (двигательными) и афферентными (чувствительными) нейронами совершенствовался. Но при этом сохранял свои главные функции - проводящую и регуляторную. Именно благодаря чувствительным нейронам мы отдергиваем руку от горячей кастрюли еще до появления боли. О структуре этого органа центральной нервной системы и принципах его работы идет речь в данной статье.

Такой ранимый, но очень важный

Этот мягкий орган прячется внутри позвоночного столба. Спинной мозг человека весит всего до 40 граммов, имеет длину до 45 сантиметров, а толщина его сравнима с мизинцем - всего 8 миллиметров в диаметре. И, тем не менее, это управляющий центр сложной сети которая раскинулась по всему нашему телу. Без него не сможет выполнять свои аппарат и все жизненные органы нашего организма. Кроме позвонков спинной мозг защищают его оболочки. Наружная оболочка твердая, образована плотной соединительной тканью. В этой оболочке расположены кровеносные сосуды и нервы. А, кроме того, именно в ней наблюдается наивысшая концентрация болевых рецепторов в организме человека. А вот в самом мозге таких рецепторов нет. Вторая оболочка - паутинная, заполнена ликвором (спинномозговой жидкостью). Последняя оболочка - мягкая - плотно прилегает к мозгу, пронизана кровеносными и лимфатическими сосудами.

Несколько слов о нейронах

Структурной единицей нервной ткани являются нейроны. Совершенно особые клетки, главная функция которых образование и передача нервного импульса. Каждый нейрон имеет множество коротких отростков - дендритов, воспринимающих раздражение, и один длинный - аксон, который проводит нервный импульс только в одном направлении. В зависимости от задачи и бывают чувствительные и двигательные. Нейроны промежуточные или вставочные - это своеобразные «удлинители», которые передают импульс между другими нейронами.

Строение спинного мозга

Начинается спинной мозг с затылочного отверстия черепа, заканчивается в поясничных позвонках. Он состоит из 31-33 сегментов, которые не отделены друг от друга: С1-С8 - шейные, Th1- Th12 - грудные, L1-L5 - поясничные, S1-S5 - крестцовые, Co1-Co3 - копчиковые. Ниже в канале позвоночника расположены продолжения нервов, собранные в пучок и именуемые конским хвостом (видимо за внешнее сходство), которые иннервируют нижние конечности и органы таза. Каждый сегмент имеет две пары корешков, которые соединяются в 31 пару спинномозговых нервов. Два задних (дорсальных) корешка образованы аксонами чувствительных нейронов и имеют утолщение - где находятся тела этих нейронов. Два передних (вентральных) корешка образованы аксонами двигательных нейронов.

Такие разные и важные

В спинном мозге человека находится порядка 13 миллионов нервных клеток. Функционально они делятся на 4 группы:

  • Двигательные - образуют передние рога и передние корешки.
  • Интернейроны - образуют задние рога. Здесь находятся чувствительные нейроны, в которых возникает на различные раздражения (болевые, тактильные, вибрационные, температурные).
  • Симпатические и парасимпатические нейроны - находятся в боковых рогах и образуют передние корешки.
  • Ассоциативные - это уже клетки головного мозга, которые устанавливают связь между сегментами спинного мозга.

Серая бабочка в окружении белого

В центре спинного мозга расположено серое вещество, образующее передние, задние и боковые рога. Это тела нейронов. В спинальных ганглиях расположены чувствительные нейроны, длинный отросток которых находится на периферии и заканчивается рецептором, а короткий - в нейронах задних рогов. Передние рога образованы аксоны которых идут к скелетным мышцам. В боковых рогах расположены нейроны вегетативной системы. Серое вещество окружено белым - это нервные волокна, образованные аксонами восходящих и нисходящих проводных путей. Первые чувствительные нейроны расположены в следующих сегментах: шейном С7, грудных Th1- Th12, поясничных L1-L3, крестцовых S2-S4. При этом спинномозговой нерв соединяет в один ствол задние (чувствительные) и передние (двигательные) корешки. При этом каждая пара спинномозговых нервов контролирует определенные части тела.

Как это работает

Разветвленные дендриты чувствительных нейронов спинальных центров вегетативной нервной системы заканчиваются рецепторами, которые представляют собой биологические структуры, в которых формируется нервный импульс при контакте с конкретным раздражителем. Рецепторы обеспечивают вегетовисцеральную чувствительность - воспринимают раздражение от таких частей нашего тела как кровеносные сосуды и сердце, желудочно-кишечный тракт, печень и поджелудочная железа, почки и другие. По дендриту импульс передается к телу нейрона. Далее по аксонам афферентных (чувствительных) нейронов поступает в спинной мозг, где образуют синоптические соединения с дендритами эфферентных (двигательных) нейронов. Именно благодаря такому прямому контакту мы отдергиваем руку от горячей кастрюли или утюга еще до того, как наш главный командир - головной мозг - проанализирует возникшие болевые ощущения.

Подводим итог

Все наши автоматические и рефлекторные действия происходят под надзором именно спинного мозга. Исключение составляют лишь те, которые контролирует сам головной мозг. Например, воспринимая увиденное с использованием глазного нерва, который идет прямо в головной мозг, мы меняем угол зрения при помощи мышц глазного яблока, которые уже контролируются спинным мозгом. Плачем мы, кстати, тоже по приказу спинного мозга - слезными железами «командует» именно он. Сознательные наши действия начинаются в головном мозге, но как только они становятся автоматическим, их контроль переходит к спинному мозгу. Можно сказать, что нашему пытливому головному мозгу нравится учиться. А когда он уже научился, ему становится скучно и он отдает «бразды правления» своему более древнему в эволюционном плане собрату.




© 2024
womanizers.ru - Журнал современной женщины