19.06.2020

Механизм формирования иммунной памяти иммунология. Иммунологическая память и толерантность. Иммунологические расстройства у человека


Оглавление темы "Клеточные имунные реакции. Иммунная память. Иммунное реагирование при инфекциях. Иммунодефициты.":









Иммунная память - способность иммунной системы отвечать на вторичное проникновение Аг быстрым развитием специфических реакций по типу вторичного иммунного ответа. Реализацию этого эффекта обеспечивают стимулированные Т- и В-лимфоциты, не выполняющие эффекторные функции. Феномен иммунной памяти проявляется как в гуморальных, так и в клеточных реакциях. Клетки памяти циркулируют в покоящемся состоянии, а при повторном контакте с Аг образуют обширный пул «Аг-представляющих» клеток (не следует путать с клетками макрофа-гально-моноцитарной системы, задействованных в первичном ответе). Иммунная память может сохраняться долгое время, поддерживаясь преимущественно Т-клетками памяти .

Бустер эффект

Бустер-эффект - феномен интенсивного развития иммунного ответа на вторичное попадание Аг [от англ. to boost, усиливать]. Его используют для получения лечебных и диагностических сывороток с высокими титрами AT (гипериммунные сыворотки) от иммунизированных животных. Для этого животных иммунизируют Аг, а затем проводят повторное, бустерное его введение. Иногда повторную иммунизацию проводят несколько раз. Бустер-эффект также применяют для быстрого создания невосприимчивости при повторных вакцинациях (например, для профилактики туберкулёза).

Вакцинопрофилактика

Эффект иммунной памяти составляет основу вакцинопрофилактики многих инфекционных болезней. Для этого человека вакцинируют, а затем (через определённый временной интервал) ревакцинируют. Например, вакцинопрофилактика дифтерии включает повторные ревакцинации с интервалом 5-7 лет.

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ

способность иммунной системы организма после первого взаимодействия с антигеном специфически отвечать на его повторное введение. Наряду со специфичностью, И. п.- важнейшее свойство иммунного ответа. Позитивная И. п. проявляется как ускоренный и усиленный специфич. ответ на повторное введение антигена. При первичном гуморальном иммунном ответе после введения антигена проходит неск. дней (латентный период) до появления в крови антител. Затем наблюдается постепенное увеличение кол-ва антител до максимума с последующим снижением. При вторичном ответе на ту же дозу антигена латентный период сокращается, кривая увеличения антител становится круче и выше, а её снижение происходит медленнее. В клеточном иммунитете И. п. проявляется ускоренным отторжением вторичного трансплантата и более интенсивной воспалительно-нек-ротич. реакцией на повторное внутрикож-ное введение антигена. Позитивная И. п. к антигенным компонентам окружающей среды лежит в основе аллергич. заболеваний, а к резус-антигену (возникает при резус-несовместимой беременности)- в основе гемолитич. болезни новорождённых. Негативная И. п. - это естеств. и приобретённая иммунологич. толерантность, проявляющаяся ослабленным ответом или его полным отсутствием как на первое, так и на повторное введение антигена. Нарушение негативной И. п. к собств. антигенам организма является патогенетич. механизмом нек-рых аутоиммунных заболеваний. Выработка негативной И. п.- наиб, перспективный приём преодоления гистонесовместимости при трансплантации органов и тканей. И. п. при ответе на разные антигены различна. Она может быть краткосрочной (дни, недели), долговременной (месяцы, годы) и пожизненной. Напр., человек, иммунизированный столбнячным анатоксином или живой полиомиелитной вакциной, сохраняет И. п. св. 10 лет. И. п. представляет собой разновидность биол. памяти, принципиально отличающуюся от нейрологич. (мозговой) памяти по способу её введения, уровню хранения и объёму информации. Осн. носители И. п.- долгоживущие Т- и В-лимфоциты, к-рые образуются при первичном иммунном ответе и продолжают циркулировать с кровью и лимфой в качестве специфич. предшественников антиген-реактивных лимфоцитов. При вторичном ответе эти клетки размножаются, обеспечивая быстрое увеличение клона антителообразующих или антиген-реактивных лимфоцитов данной специфичности. Из др. механизмов И. п. (кроме клеток памяти) определ. значение имеют иммунные комплексы, цитоф ильные антитела, а также блокирующие и антиидиотипич. антитела. И. п. можно перенести от иммунного донора неиммунному реципиенту, переливая живые лимфоциты или вводя лимфоцитарный экстракт, содержащий «фактор переноса» или иммунную РНК. Ввод информации в И. п. осуществляется антигеном, хотя информация об антигене к этому моменту уже существует в генетич. памяти, возникшей в филогенезе и в т. н. онтогенетич. памяти, появившись в эмбриогенезе при дифференцировке лимфоидных клеток. Информац. ёмкость И. п.- до 106-107 бит на организм. У позвоночных включается более 100 бит в сутки. В филогенезе И. п. возникла одновременно с нейрологич. памятью. Полной ёмкости И. п. достигает у взрослых животных со зрелой иммунной системой (у новорождённых и старых особей она ослаблена).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)


Смотреть что такое "ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ" в других словарях:

    иммунологическая память - Существование иммунной защиты против специфического возбудителя спустя много лет после перенесенного заболевания. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики… … Справочник технического переводчика

    Immunological memory иммунологическая память. Cпособность иммунной системы к более быстрому иммунному ответу (позитивная И.п.) или к более слабому ответу (иммунологическая толерантность ) при … Молекулярная биология и генетика. Толковый словарь.

    Иммунологическая память - – способность иммунной системы организма отвечать специфическими реакциями на повторные вве дения антигена, проявляется ускорением или усилением ответа на антиген; выделяют кратковременную, долговременную и пожизненную; носителем являются… … Словарь терминов по физиологии сельскохозяйственных животных

    Способность иммунной системы быстрее и интенсивнее отвечать на повторную встречу с Аг. Обусловлена образованием при первичной встрече с Аг (примировании) долгоживущих, рециркулирующих Т и В клеток иммунол. памяти. (

При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен - иммунологической памяти. Иммунологическая память имеет высокую специфичность к конкретному АГ., распространяется на гуморальное и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Благодаря ей наш организм надежно защищен от повторных антигенных интервенций.

Механизм формирования. Один из них предполагает длительное сохранение АГ в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персисгирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под-держивая в напряжении иммунную систему. Вероятно также наличие долгоживуших дендритных АПК, способных длительно сохранять и презентировать антиген. Другой в процессе развития в оргнизме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфопитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе-цифичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному тиггу. Феномен иммунологической памяти используется в практике вакцинации для создания напряженного иммунитета и поддержания его длительное время гга защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями.

Однако феномен имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

Иммунологическая толерантность- явление, противоположное иммунному ответу и иммунологической памяти. Проявляется отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену. Открытию предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых телят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмениваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов - своими и чужими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение.

Собственно феномен иммунологической толерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой английских исследователей во главе е П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар - на новорожденных мышатах показали, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем иостнатальном ггериоде. Иммунологическую толерантность вызывают AI - толерогены. бывает врожденной - отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты). или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность: Активная

толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммуно- компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.). Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления зависит от свойств макроорганизма и толерогена - возраст и состояние иммуннореактивности организма.легче индуцировать в эмбриональном периоде развития и в первые дни после рождения, со сниженной иммунореактивностью антигена- степень его чужеродности для организма и природу, дозу препарата и продолжительность воздействия антигена на организм. Наибольшей толерогенностью обладают наименее чужеродные по отношению к организму антигены, имеющие малую молекулярную массу и высокую гомогенность. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. При этом наблюдается прямая зависимость между дозой вещества и производимым им эффектом. Низкодозовая толерантность, наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

Выделяют три наиболее вероятные причины развития иммунологической толерантности: 1. Элиминация из организма антигенспецифических клонов лимфоцитов. 2. Блокада биологической активности иммунокомпетентных клеток.З. Быстрая нейтрализация АГ AT.

Элиминации, подвергаются клоны аутореактивных Т- и В-лимфоцитов на ранних стадиях их онтогенеза. Активация антигенспецифического рецептора (ТСК или ВСК.) незрелого лимфоцита индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название центральной толерантности. Основная роль в блокаде биологической активности иммунокомпетентных клеток принадлежит иммуноцитокинам. Воздействуя на соответствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, пролиферацию Т- и В-лимфоцитов активно тормозит (3-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи HJ1-4. -13, а в Т2-хелпер - у-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелпсров(ИЛ-4. -10, -13,.

Биосинтез в B-лимфоците и его превращение в плазмоцит подавляется YgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток - элиминируется специфический активирующий фактор. Возможен адаптивный перенос иммунологической толерантности интактному животному путем введения ему иммунокомпетентных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами. интерлейкинами или переключить направленность ее реакции иммунизацией модифицированными антигенами. Другой путь - удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию. Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

Особенности противовирусного, противогрибкового, противоопухолевого, трансплантационного иммунитета.

Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, инфицированные вирусом, уничтожаются цитотоксическими лимфоцитами, а также NK-клетками и фагоцитами, взаимодействую-щими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Противовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифического иммунитета - сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клетках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрессию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с вирусами, препятст-вуют их адгезии на эпителиоцитах.

Противогрибковый иммунитет. Антитела (IgM, IgG) при микозах выявляются в низких титрах. Основой противогрибкового иммунитета является клеточный иммунитет. В тканях происходит фагоцитоз, развивается эпителиоидная гранулематозная реакция, иногда тромбоз кровеносных сосудов. Микозы, особенно оппортунистические, часто развиваются после длительной антибактериальной терапии и при иммунодефицитах. Они сопровождаются развитием гиперчувствительности замедленного типа. Возможно развитие аллергических заболеваний после респираторной сенсибилизации фрагментами условно-патогенных грибов родов Aspergillus, Penicillium, Mucor, Fusarium и др. Антигены грибов имеют относительно низкую иммуногенность: они практически не индуцируют антителообразование (титры специфических антител остаются низкими), но стимулируют клеточное звено иммунитета - активированные макрофаги, которые осуществляют антителозависимую клеточноопосредованную цит о токсичность г рибов. Активированные макрофаги продуцируют перекисные и N0"-ион-радикалы и ферменты,

которьК поражают мембрану клетки на расстоянии или после фагоцитирования. Первичное распознавание чужеродных клеток происходит при помощи FcR по антителам, которые связались с поверхностными антигенами клеток-мишеней. При микозах наблюдается аллергизация макроорганизма. Кожные и глубокие микозы сопровождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и мочеполовых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.

Трансплантационным иммунитетом - иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Иммунная реакция на чужеродные клетки и ткани обусловлена чем, что в их составе содержатся генетически чужеродные для организма антигены- гистосовместимости, наиболее полно представлены на ЦПМ клеток. Реакция отторжения не возникает лишь у однояйцовых близнецов. Выраженность реакции от степени чужеродности, объема трансплант ируемою материала и состояния иммунореактивност и реципиента. Основным фактором клеточного трансплантационного иммунитета являются Т-киллеры. После сенсибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточноопосредованную цитотоксичность.Специфические антитела, которые образуются на чужеродные антигены (гемагглютинины, гемолизины, лейкотоксины, цитогоксины), имеют важное значение в формировании трансплантационного иммунитета. Они запускают ан тителоопосредованный ци толиз трансплантата (комплемен-опосредованный и антителозависимая клеточноопосредован- ная цитотоксичность).

Механизм отторжения. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетентных клеток (лимфоидная инфильтрация), в том числе Т- киллеров. Во второй фазе происходит деструкция клеток трансплантата Т-киллерами, активируются макрофагапьное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспатение, тромбоз кровеносных сосудов, нарушается питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.-В процессе реакции отторжения формируется клон Т- и B-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный ответ, который протекае т очень бурно и быстро заканчивае тся отторжением трансплантата. С клинической точки зрения выделяют ос трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам. Острое отторжение - это «нормальная» реакция иммунной системы по механизму первичного ответа, которая развивается в течение первых недель или месяцев после трансплантации в отсутствие иммуносупрессивной терапии. В ее основе лежит комплекс всевозможных цитолитических реакций, как с участием антител, так и независимых от них.

Отсроченное отторжение имеет тот же механизм, что и острое. Возникает через несколько лет после операции у пациентов, получавших иммуносупрессивную терапию. Сверхострое отторжение, или криз отторжения, развивается в течение первых суток после трансплантации у пациентов, сенсибилизированных к антигенам донора, по механизму вторичного иммунного ответа. Основу составляет антительная реакция: специфические антитела связываются с антигенами эндотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно инициируется иммунное воспаление и свертывающая система крови. Быстрый тромбоз сосудов трансплан тата вызывает его острую ишемию и ускоряет некрогизацию пересаженных тканей.

Иммунитет противоопухолевый. Мутантиые клетки возникают в результате нелетального действия химических, физических и биологических канцерогенов Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, имеют измененные антигены гистосовместимости.Они активируют гуморальное и клеточное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную реакцию и антителозависимую клеточно-опос- редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую клеточноопосредованную цитотоксичность.

Противоопухолевый иммунитет имеет свои особенности, связанные с низкой иммуногенностью раковых клеток. Эти клетки практически не отличаются от нормальных, интактных морфологических элементов собственного организма. Специфический антигенный «репертуар» опухолевых клеток также скуден. В число опухольассоциированных антигенов входит группа раково- эмбриональных антигенов, продукты онкогенов, некоторые вирусные антигены и гиперэкспрессируемые нормальные белки. Слабому иммунологическому распознаванию опухолевых клеток способствует отсутствие воспалительной реакции в месте онкогенеза, а также их иммуносупрессивная активность - биосинтез ряда «негативных» цитокинов, а также экранирование раковых клеток противоопухолевыми антителами.

Механизм основную роль в нем играют активированные макрофаги; определенное значение имеют также естественные киллеры. Защитная функция гуморального иммунитета во многом спорная - специфические антитела могут экранировать антигены опухолевых клеток, не вызывая их цитолиза.

Вместе с тем, в последнее время получила распространение иммунодиагностика рака основана на определении раково-эмбриональных антигенов и опухоль-ассоциированных

Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммуннуюреакцию - вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями .

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

Иммунологическая толерантность -явление,противоположное иммунному ответу и иммунологической памяти.Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в

организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы.Известно,что ее основу составляют нормальныепроцессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:

    Элиминация из организма антигенспецифических клонов лимфоцитов.

    Блокада биологической активности им-мунокомпетентных клеток.

    Быстрая нейтрализация антигена антителами.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения

многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

64 Классификация гиперчувствительности по Джейлу и Кумбсу.

Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксический (IIтип), иммунокомплексный (IIIтип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый - к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ - лимфоидно-макрофагальная реакция.

Аллергическая реакция I типа связана с биологическими эффектамиIgEиG4,названныхреагинами, которые обладаютцитофильностью - сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки - залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В

результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.

Цитотоксические антитела (IgG, IgM), направленные против поверхностных структур (антигенов) соматических клеток макроорганизма, связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа ). Массивный цитолиз сопровождается соот-ветствующими клиническими проявлениями. Классическим примером является гемолитическая болезнь в результате резус-конфликта или переливания иногруппной крови.

Цитотоксическим действием обладают также комплексы атиген-антитело, образующиеся в организме пациента в большом количестве после введения массивной дозы антигена (аллергическая реакция III типа ). В связи с кумулятивным эффектом клиническая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от применения иммунных гетерологичных сывороток с лечебно-профилактической целью («сывороточная болезнь»), а также при вдыхании белковой пыли («легкое фермера»).

Тип реакции

ктор патогенеза

анизм патогенеза

Клинический пример

анафилактический (ГНТ)

IgE, IgG4

е рецепторного

я, анафилактический шок, полли

gE (G4)-АсК тучных

офилов →

вие эпитопа аллерген

м комплексом →

учных клеток и

→ Высвобождение

воспаления и других

и активных веществ

. цитотоксический (ГНТ)

цитотоксических ан

волчанка,

аустоимм

антителозавис

ммунокомплексный (ГНТ)

системные заболе

ной ткани, феномен Артюса, «л

комплексов на базал

эндотелии

нотканной

антителозавис

осредованной

воспаления

еточно-опосредованный (ГЗТ)

-лимфоциты

ация Т-лимфоцитовргическая

макрофага

→ З лковая аллергия замедленного ти

воспаления

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ, способность иммунной системы запоминать первый контакт организма с антигеном и реагировать на его повторное поступление более быстрой и интенсивной реакцией, направленной на его удаление. Субстратом иммунологической памяти являются её В- и Т-лимфоциты, формирующиеся из основных популяций В- и Т-лимфоцитов иммунной системы и отличающиеся от последних антигенраспознающими рецепторами [например, в В-лимфоцитах иммунологической памяти рецепторы представлены преимущественно иммуноглобулинами G (IgG) или А (IgA), а не иммуноглобулинами М или D обычных В-лимфоцитов]; они обладают более высоким сродством к антигену, приобретённому в ходе их развития, а также набором хемокиновых рецепторов и молекул клеточной адгезии. Это определяет различие путей их рециркуляции: если обычные лимфоциты мигрируют из кровотока во вторичные лимфоидные органы (лимфатические узлы, селезёнку, миндалины и другие фолликулярные структуры), то клетки иммунологической памяти - преимущественно в кожу, слизистые оболочки, паренхиматозные органы, особенно в очаги воспаления.

Ускорение и повышение эффективности иммунного ответа при повторном поступлении антигена, индуцировавшего формирование иммунологической памяти, связано с большей численностью клеток в клонах В- и Т-лимфоцитов иммунологической памяти по сравнению с клонами обычных В- и Т-лимфоцитов, «облегчённым» механизмом активации и отсутствием необходимости в прохождении некоторых этапов иммунного ответа. В результате за более короткий срок образуется большее число эффекторных клеток и гуморальных факторов иммунной защиты с более высоким сродством к антигену, что и обеспечивает более высокую результативность иммунного ответа. Продолжительность иммунологической памяти определяется сроком жизни её клеток, которая значительно превышает сроки жизни обычных лимфоцитов и составляет несколько лет. Полагают, что для поддержания жизнеспособности В-лимфоцитов иммунологической памяти требуется присутствие в организме антигена, тогда как численность Т-лимфоцитов иммунологической памяти не зависит от присутствия антигена и поддерживается цитокинами (в частности, интерлейкинами 15 и 7).

Обычно наличие иммунологической памяти эффективно предохраняет организм от развития заболевания при инфицировании или существенно облегчает течение болезни. С формированием иммунологической памяти связана вакцинация против инфекционных заболеваний, при которой введение антигенов возбудителя приводит к образованию клеток иммунологической памяти без развития инфекционного процесса.

Лит. смотри при ст. Иммунитет.




© 2024
womanizers.ru - Журнал современной женщины