21.09.2019

На практическом занятии рассмотрим этот путь и сравним результаты моделирования с теоретическим решением. Графы состояний СМО. Вопросы для самопроверки


  • Простейший поток и применение практических задач.
  • Нестационарные пуассоновские потоки.
  • Потоки с ограниченными последствиями (потоки Пальма).
  • Потоки восстановления.
  • 1. Введение.

    1.1. Историческая справка.

    Большинство систем, с которыми человек имеет дело, являются стохастическими. Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях.

    Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К. Эрлангом (1878- 1929г) в период между 1908 и 1922гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, морских и речных портов, магазинов, терминальных классов, электронных вычислительных комплексов, радиолокационных станций и т.д. может быть описана в рамках ТСМО.

    1.2. Примеры систем массового обслуживания. Анализ задач ТСМО.

    Пример 1. Телефонная связь времен Эрланга представляла из себя телефонную станцию, связанную с большим числом абонентов. Телефонистки станции по мере поступления вызовов соединяли телефонные номера между собой.

    Задача: Какое количество телефонисток (при условии их полной занятости) должно работать на станции для того, чтобы потери требований были минимальными.

    Пример 2. Система скорой помощи некоего городского района представляет собой пункт (который принимает требования на выполнение), некоторое количество автомашин скорой помощи и несколько врачебных бригад.

    Задача: Определить количество врачей, вспомогательного персонала, автомашин, для того чтобы время ожидания вызова было для больных оптимальным при условии минимизации затрат на эксплуатацию системы и максимизации качества обслуживания.

    Пример 3. Важной задачей является организация морских и речных перевозок грузов. При этом особое значение имеют оптимальное использование судов и портовых сооружений.

    Задача: Обеспечить определенный объем перевозок при минимальных расходах. При этом сократить простои судов при погрузочно-разгрузочных работах.

    Пример 4. Система обработки информации содержит мультиплексный канал и несколько ЭВМ. Сигналы от датчиков поступают на мультиплексный канал, где буферизуются и предварительно обрабатываются. Затем поступают в ту ЭВМ, где очередь минимальна.

    Задача: Обеспечить ускорение обработки сигналов при заданной суммарной длине очереди.

    Пример 5 . На рис 1.1. изображена структурная схема типичной системы массового обслуживания – ремонтного предприятия (например, по ремонту ПЭВМ). Порядок ее работы ясен из схемы и не требует разъяснений.

    рис 1.1.

    Нетрудно привести множество других примеров из самых различных областей деятельности.

    Характерным для таких задач является:

    1. условия “двойной” случайности –
      • случаен момент времени поступления заказа на обслуживание (на телефонную станцию, на пункт скорой помощи, на вход процессора, случаен момент времени прибытия морского судна под погрузку и т.д.);
      • случайна длительность времени обслуживания.

    2)проблема бича нашего времени – очередей: судов перед шлюзами, машин перед прилавками, задач на входе процессоров вычислительного комплекса и т.д.

    А.К. Эрланг обратил внимание на то, что СМО могут быть разделены на два типа, а именно: на системы с ожиданием и системы с потерями. В первом случае – заявка, поступившая на вход системы “ждет” очереди на выполнение, во втором – она из-за занятости канала обслуживания получает отказ и теряется для СМО.

    В дальнейшем мы увидим, что к классическим задачам Эрланга прибавляются новые задачи:

    Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания (рис 1.1.). Причем на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, подналадки и т.д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

    1.3. Понятия, определения, терминология.

    Все СМО имеют вполне определенную структуру, изображенную на рис 1.2

    рис 1.2

    Определения, термины

      • Потоком называют последовательность событий. Поток, состоящий из требований на обслуживание, называют потоком требований.
      • Поток требований, поступающих в обслуживающую систему, называют входящим потоком.
      • Поток требований, которые обслужены, называют выходящим потоком.
      • Совокупность очередей и приборов (каналов) обслуживания называются системой обслуживания.
      • Каждые требования поступают на свой канал, где подвергается операции обслуживания.
      • Каждая СМО имеет определенные правила формирования очереди и правила или дисциплину обслуживания.

    1.4. Классификация СМО.

    1.4.1. По характеру источника требований различают СМО с конечным и бесконечным количеством требований на входе.

    В первом случае в системе циркулирует конечное, обычно постоянное количество требований, которые после завершения обслуживания возвращаются в источник.

    Во втором случае источник генерирует бесконечное число требований.

    Пример 1. Цех с постоянным количеством станков или определенное количество ПЭВМ в терминальном классе, требующих постоянного профилактического осмотра и ремонта.

    Пример 2 . Сеть Internet с бесконечным требованием на входе, любой магазин, парикмахерская и т.д.

    Первый вид СМО называют замкнутой, второй – разомкнутой.

    СМО различают:

    1.4.2. По дисциплине обслуживания:

      1. обслуживание в порядке поступления;
      2. обслуживание в случайном порядке (в соответствии с заданным законом распределения);
      3. обслуживание с приоритетом.

    1.4.3. по характеру организации:

      1. с отказами;
      2. с ожиданиями;
      3. с ограничением ожидания.

    В первом случае заявка получает отказ, когда канал занят. Во втором случае – ставится в очередь и ждет освобождения канала. В третьем случае вводится ограничения на длительность ожидания.

    1.4.4. По количеству единиц обслуживания:

      1. одноканальные;
      2. двухканальные;
      3. многоканальные.

      1.4.5. По числу этапов (фаз) обслуживания - на однофазные и многофазные. (Примером многофазных СМО может служить любая поточная линия).

      1.4.6. По свойствам каналов: на однородные, когда каналы имеют одинаковую характеристику и неоднородные в противном случае.

    Рисунок 0 - 2 Потоки событий (а) и простейший поток (б)

    10.5.2.1. Стационарность

    Поток называется стационарным, если вероятность попадания того или иного числа событий на элементарный участок времени длиной τ (

    Рисунок 0-2 , а) зависит только от длины участка и не зависит от того, где именно на оси t расположен этот участок.

    Стационарность потока означает его однородность по времени; вероятностные характеристики такого потока не меняются в зависимости от времени. В частности, так называемая интенсивность (или «плотность») потока событий среднее число событий в единицу времени для стационарного потока должна оставаться постоянной. Это, разумеется, не значит, что фактическое число событий, появляющихся в единицу времени, постоянно, поток может иметь местные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный участок времени, остается постоянным для всего рассматриваемого периода.

    На практике часто встречаются потоки событий, которые (по крайней мере, на ограниченном участке времени) могут рассматриваться как стационарные. Например, поток вызовов, поступающих на телефонную станцию, скажем, на интервале от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не будет стационарным (ночью интенсивность потока вызовов гораздо меньше, чем днем). Заметим, что так же обстоит дело и с большинством физических процессов, которые мы называем «стационарными» в действительности они стационарны только на ограниченном участке времени, а распространение этого участка до бесконечности лишь удобный прием, применяемый в целях упрощения.

    10.5.2.2. Отсутствие последействия

    Поток событий называется потоком без последействия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой (или другие, если рассматривается больше двух участков).

    В таких потоках события, образующие поток, появляются в последовательные моменты времени независимо друг от друга. Например, поток пассажиров, входящих на станцию метро, можно считать потоком без последействия, потому что причины, обусловившие приход отдельного пассажира именно в данный момент, а не в другой, как правило, не связаны с аналогичными причинами для других пассажиров. Если такая зависимость появляется, условие отсутствия последействия оказывается нарушенным.

    Рассмотрим, например, поток грузовых поездов, идущих по железнодорожной ветке. Если по условиям безопасности они не могут следовать один за другим чаще, чем через интервал времени t 0 , то между событиями в потоке имеется зависимость, и условие отсутствия последействия нарушается. Однако, если интервал t 0 мал по сравнению со средним интервалом между поездами, то такое нарушение несущественно.

    Рисунок 0 - 3 Распределение Пуассона

    Рассмотрим на оси t простейший поток событий с интенсивностью λ. (Рисунок 0-2 б). Нас будет интересовать случайный интервал времени Т между соседними событиями в этом потоке; найдем его закон распределения. Сначала найдем функцию распределения:

    F(t) = P(T ( 0-2)

    т. е. вероятность того, что величина Т будет иметь значение, меньшее, чем t . Отложим от начала интервала Т (точки t 0 ) отрезок t и найдем вероятность того, что интервал Т будет меньше t . Для этого нужно, чтобы на участок длины t , примыкающий к точке t 0 , попало хотя бы одно событие потока. Вычислим вероятность этого F (t ) через вероятность противоположного события (на участок t не попадет ни одного события потока):

    F (t ) = 1 - Р0

    Вероятность Р 0 найдем по формуле (1), полагая m = 0:

    откуда функция распределения величины Т будет:

    (0-3)

    Чтобы найти плотность распределения f (t ) случайной величины Т, необходимо продифференцировать выражение (0‑1) по t :

    0-4)

    Закон распределения с плотностью (0‑4) называется показательным (или экспоненциальным). Величина λ называется параметром показательного закона.

    Рисунок 0 - 4 Экспоненциальное распределение

    Найдем числовые характеристики случайной величины Т - математическое ожидание (среднее значение) M [ t ]= m t , и дисперсию D t . Имеем

    ( 0-5)

    (интегрируя по частям) .

    Дисперсия величины Т составляет:

    (0-6)

    Извлекая корень квадратный из дисперсии, найдем среднее квадратическое отклонение случайной величины Т.

    Итак, для показательного распределения математическое ожидание и среднее квадратическое отклонение равны друг другу и обратны параметру λ, где λ. интенсивность потока.

    Т.о., появление m событий в заданный промежуток времени соответствует пуассоновскому распределению, а вероятность того, что временные интервалы между событиями будут меньше некоторого наперед заданного числа, соответствует экспоненциальному распределению. Все это лишь различные описания одного и того же стохастического процесса.


    Пример СМО- 1 .

    В качестве примера рассмотрим банковскую систему, работающую в реальном масштабе времени и обслуживающую большое число клиентов. В часы пик запросы от кассиров банка, работающих с клиентами, образуют пуассоновский поток и поступают в среднем по два в 1 с (λ = 2).Поток состоит из заявок, поступающих с интенсивностью 2 заявки в секунду.

    Рассчитаем вероятность Р ( m ) появления m сообщений в 1 с. Так как λ = 2, то из предыдущей формулы имеем

    Подставляя m = 0, 1, 2, 3, получим следующие величины (с точностью до четырех десятичных знаков):

    Рисунок 0 - 5 Пример простейшего потока

    Возможно поступление и более 9 сообщений в 1 с, но вероятность этого очень мала (около 0,000046).

    Полученное распределение может быть представлено в виде гистограммы (показана на рисунке).

    Пример СМО- 2 .

    Прибор (сервер), обрабатывающей три сообщения в 1с.

    Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает всреднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?

    Вероятность того, что скорость поступления будет меньше или равна 3 с, определяется выражением

    Если система может обрабатывать максимум 3 сообщения в 1 с, то вероятность того, что она не будет перегружена, равна

    Другими словами, 85,71% сообщений будут обслуживаться немедленно, а 14,29% с некоторой задержкой. Как видим, задержка в обработке одного сообщения на время, большее времени обработки 3 сообщений, будет встречаться редко. Время обработки 1сообщения составляет в среднем 1/3 с. Следовательно, задержка более 1с будет редким явлением, что вполне приемлемо для большинства систем.

    Пример СМО- 3

    · Если кассир банка занят в течение 80% своего рабочего времени, а остальное время он тратит на ожидание клиентов, то его можно рассматривать как устройство с коэффициентом использования 0,8.

    · Если канал связи используется для передачи 8-битовых символов со скоростью 2400 бит/с, т. е. передается максимум 2400/8 символов в 1 с, и мы строим систему, в которой суммарный объем данных составляет 12000 символов, посылаемых от различных устройств через канал связи в минуту наибольшей нагрузки (включая синхронизацию, символы конца сообщений, управляющие и т. д.), то коэффициент использования оборудования канала связи в течение этой минуты равен

    · Если механизм доступа к файлу в час наибольшей нагрузки осуществляет 9000 обращений к файлу, а время одного обращения равно в среднем 300 мс, то коэффициент использования оборудования механизма доступа в час наибольшей нагрузки составляет

    Понятие коэффициента использования оборудования будет использоваться довольно часто. Чем ближе коэффициент использования оборудования к 100%, тем больше задержки и длиннее очереди.

    Используя предыдущую формулу, можно составить таблицы значений функции Пуассона, по которым можно определить вероятность поступления m или более сообщений в данный отрезок времени. Например, если в среднем поступает 3,1 сообщения в секунду [т. е. λ = 3,1], то вероятность поступления 5 и более сообщений в данную секунду равна 0,2018 (для m = 5 в таблице). Или в аналитическом виде

    Используя это выражение, специалист по системному анализу может рассчитать вероятность того, что система не обеспечит заданный критерий нагрузки.

    Часто первоначальные расчеты могут быть проведены для значений загрузки оборудования

    ρ ≤ 0,9

    Эти значения можно получить с помощью таблиц Пуассона.

    Пусть снова средняя скорость поступления сообщений λ = 3,1 сообщения/с. Из таблиц следует, что вероятность поступления 6 или более сообщений в 1 с равна 0,0943. Следовательно, это число можно взять в качестве критерия нагрузки для проведения начальных расчетов.

    10.6.2. Задачи проектирования

    При случайном характере поступления сообщений в устройство последнее затрачивает часть времени на обработку или обслуживание каждого сообщения, в результате чего образуются очереди. Очередь в банке ожидает освобождения кассира и его компьютера (терминала). Очередь сообщений во входном буфере ЭВМ ожидает обработки процессором. Очередь требований к массивам данных ждет освобождения каналов и т. д. Очереди могут образовываться во всех узких местах системы.

    Чем больше коэффициент использования оборудования, тем длиннее возникающие очереди. Как будет показано ниже, можно спроектировать удовлетворительно работающую систему с коэффициентом использований ρ =0,7 но коэффициент, превышающий ρ > 0,9, может привести к ухудшению качества обслуживания. Другими словами, если канал пересылки массива данных имеет загрузку 20%, вряд ли на нем возникнет очередь. Если же загрузка; составляет 0,9, то, как правило, будут образовываться очереди, иногда очень большие.

    Коэффициент использования оборудования равен отношению нагрузки на оборудование к максимальной нагрузке, которую может выдержать это оборудование, или равен отношению времени занятости оборудования к общему времени его функционирования.

    При проектировании системы обычно делается оценка коэффициента использования для различных видов оборудования; соответствующие примеры будут приведены в последующих главах. Знание этих коэффициентов позволяет рассчитать очереди к соответствующему оборудованию.

    · Какова длина очереди?

    · Сколько времени на нее будет затрачиваться?

    На вопросы подобного типа можно ответить с помощью теории очередей.

    10.6.3. Системы массового обслуживания, их классы и основные характеристики

    Для СМО потоки событий это потоки заявок, потоки «обслуживании» заявок и т. д. Если эти потоки не являются пуассоновскими (марковский процесс), математическое описание процессов, происходящих в СМО, становится несравненно более сложным и требует более громоздкого аппарата, доведение которого до аналитических формул удается только в простейших случаях.

    Однако, аппарат «марковской» теории массового обслуживания может пригодиться и в том случае, когда процесс, протекающий в СМО, отличен от марковского с его помощью характеристики эффективности СМО могут быть оценены приближенно. Следует заметить, что чем сложнее СМО, чем больше в ней каналов обслуживания, тем точнее оказываются приближенные формулы, полученные с помощью марковской теории. Кроме того, в ряде случаев для принятия обоснованных решений по управлению работой СМО вовсе и не требуется точного знания всех ее характеристик зачастую достаточно приближенного, ориентировочного.

    СМО классифицируются на системы с:

    · отказами (с потерями). В таких системах заявка, поступившая в момент, когда все каналы заняты, получает «отказ», покидает СМО и в дальнейшем процессе обслуживания не участвует.

    · ожиданием (с очередью). В таких системах заявка, поступившая в момент, когда все каналы заняты, становится в очередь и ожидает, пока не освободится один из каналов. Когда канал освобождается, одна из заявок, стоящих в очереди, принимается к обслуживанию.

    Обслуживание (дисциплина очереди) в системе с ожиданием может быть

    · упорядоченным (заявки обслуживаются в порядке поступления),

    · неупорядоченным (заявки обслуживаются в случайном порядке) или

    · стековым (первой из очереди выбирается последняя заявка).

    · Приоритетным

    o со статическим приоритетом

    o с динамическим приоритетом

    (в последнем случае приоритет может, например, увеличиваться с длительностью ожидания заявки).

    Системы с очередью делятся на системы

    · с неограниченным ожиданием и

    · с ограниченным ожиданием.

    В системах с неограниченным ожиданием каждая заявка, поступившая в момент, когда нет свободных каналов, становится в очередь и «терпеливо» ждет освобождения канала, который примет ее к обслуживанию. Любая заявка, поступившая в СМО, рано или поздно будет обслужена.

    В системах с ограниченным ожиданием на пребывание заявки в очереди накладываются те или другие ограничения. Эти ограничения могут касаться

    · длины очереди (числа заявок, одновременно находящихся в очереди система с ограниченной длиной очереди),

    · времени пребывания заявки в очереди (после какого-то срока пребывания в очереди заявка покидает очередь и уходит система с ограниченным временем ожидания),

    · общего времени пребывания заявки в СМО

    и т. д.

    В зависимости от типа СМО при оценке ее эффективности могут применяться те или другие величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик ее продуктивности является так называемая абсолютная пропускная способность среднее число заявок, которое может обслужить система за единицу времени.

    Наряду с абсолютной часто рассматривается относительная пропускная способность СМО средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок).

    Помимо абсолютной и относительной пропускной способностей при анализе СМО с отказами нас могут, в зависимости от задачи исследования, интересовать и другие характеристики, например:

    · среднее число занятых каналов;

    · среднее относительное время простоя системы в целом и отдельного канала

    и т. д.

    СМО с ожиданием имеют несколько другие характеристики. Очевидно, для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способность теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными характеристиками являются:

    · среднее число заявок в очереди;

    · среднее число заявок в системе (в очереди и под обслуживанием);

    · среднее время ожидания заявки в очереди;

    · среднее время пребывания заявки в системе (в очереди и под обслуживанием);

    а также и другие характеристики ожидания.

    Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик: как абсолютная и относительная пропускная способности, так и характеристики ожидания.

    Для анализа процесса, протекающего в СМО, существенно знать основные параметры системы: число каналов п, интенсивность потока заявок λ , производительность каждого канала (среднее число заявок μ, обслуживаемое каналом в единицу времени), условия образования очереди (ограничения, если они есть).

    В зависимости от значений этих параметров выражаются характеристики эффективности работы СМО.

    10.6.4. Формулы расчета характеристик СМО для случая обслуживания с одним прибором

    Рисунок 0 - 6 Модель системы массового обслуживания с очередью

    Такие очереди могут создаваться сообщениями на входе процессора, ожидающими начала обработки. Они могут возникать при работе абонентских пунктов, подключенных к многопунктовому каналу связи. Аналогично образуются очереди из автомобилей на заправочных станциях. Однако при наличии более одного входа на обслуживание мы имеем очередь со многими приборами и анализ усложняется.

    Рассмотрим случай простейшего потока заявок на обслуживание.

    Назначение излагаемой теории очередей состоит в приближенном определении среднего размера очереди, а также среднего времени, затрачиваемого сообщениями на ожидание в очередях. Желательно также оценить, насколько часто очередь превышает определенную длину. Эти сведения позволят нам вычислить, например, необходимый объем буферной памяти для хранения очередей сообщений и соответствующих программ, необходимое количество линий связи, необходимые размеры буферов для концентраторов и т. д. Появится возможность оценивать времена ответа.

    Каждая из характеристик меняется в зависимости от используемых средств.

    Рассмотрим очередь с одним прибором обслуживания. При проектировании вычислительной системы большинство очередей подобного типа рассчитывается по приведенным формулам. коэффициент вариации времени обслуживания

    Формула Хинчина-Полачека используется для вычисления длин очередей при проектировании информационных систем. Она применяется в случае экспоненциального распределения времени поступления при любом распределении времени обслуживания и любой дисциплине управления, лишь бы выбор очередного сообщения для обслуживания не зависел от времени обслуживания.

    При проектировании систем встречаются такие ситуации возникновения очередей, когда дисциплина управления несомненно зависит от времени обслуживания. Например, в некоторых случаях мы можем выбрать для первоочередного обслуживания более короткие сообщения, чтобы получить меньшее среднее время обслуживания. При управлении линией связи можно присвоить входным сообщениям более высокий приоритет, чем выходным, ибо первые короче. В таких случаях уже необходимо использовать не уравнение Хинчина

    Большинство значений времени обслуживания в информационных системах лежит где-то между этими двумя случаями. Времена обслуживания, равные постоянной величине, встречаются редко. Даже время доступа к твердому диску непостоянно из-за различного положения массивов с данными на поверхности. Одним из примеров, иллюстрирующих случай постоянного времени обслуживания может служить занятие линии связи для передачи сообщений фиксированной длины.

    С другой стороны, разброс времени обслуживания не так велик, как в случае произвольного или экспоненциального его распределения, т.е., σ s редко достигает значений t s . Этот случай иногда считают "наихудшим и потому пользуются формулами, относящимися к экспоненциальному распределению времен обслуживания. Такой расчет может дать несколько завышенные размеры очередей и времен ожидания в них, но эта ошибка, по крайней мере, не опасна.

    Экспоненциальное распределение времен обслуживания, конечно, не наихудший случай, с которым приходится иметь дело в действительности. Однако, если времена обслуживания, полученные при расчете очередей, оказываются распределенными хуже, чем времена с экспоненциальным распределением, это часто является предостерегающим сигналом для разработчика. Если стандартное отклонение больше среднего значения, то обычно возникает необходимость в коррекции расчетов.

    Рассмотрим следующий пример. Имеется шесть типов сообщений с временами обслуживания 15, 20, 25, 30, 35 и 300. Число сообщений каждого типа одинаково. Стандартное отклонение указанных времен несколько выше их среднего. Значение последнего времени обслуживания намного больше других. Это приведет к тому, что сообщения будут находиться в очереди значительно дольше, чем, если бы времена обслуживания были одного порядка. В таком случае при проектировании целесообразно принять меры для уменьшения длины очереди. Например, если указанные цифры связаны с длинами сообщений, то, возможно, очень длинные сообщения стоит разделить на части.

    10.6.6. Пример расчета

    При проектировании банковской системы желательно знать число клиентов, которым придется ожидать в очереди к одному кассиру в часы пик.

    Время ответа системы и его стандартное отклонение рассчитаны с учетом времени ввода данных с АРМа, печатания и оформления документа.

    Действия кассира были прохронометрированы. Время обслуживания ts равно общему времени, затрачиваемому кассиром на клиента. Коэффициент использования кассира ρ пропорционален времени его занятости. Если λ число клиентов в часы пик, то ρ для кассира равно

    Предположим, что в часы пик приходит 30 клиентов в час. В среднем кассир тратит 1,5 мин на клиента. Тогда

    ρ =(1,5 * 30) / 60 = 0,75

    т. е. кассир используется на 75%.

    Число людей в очереди можно быстро оценить с помощью графиков. Из них следует, что если ρ = 0,75, то среднее число nq людей в очереди у кассы лежит между 1,88 и 3,0 в зависимости от стандартного отклонения для t s .

    Предположим, что измерение стандартного отклонения для t s дало величину 0,5 мин. Тогда

    σ s = 0,33 t s

    Из графика на первом рисунке находим, что nq = 2,0, т. е. в среднем у кассы буду ожидать два клиента.

    Общее время, в течение которого клиент стоит у кассы, может быть найдено как

    t ∑ = t q + t s = 2,5 мин + 1,5 мин=4мин

    где t s вычисляется с помощью формулы Хинчина-Полачека.

    10.6.7. Фактор усиления

    Анализируя кривые, изображенные на рисунках, мы видим, что, когда оборудование, обслуживающее очередь, используется более чем на 80%, кривые начинают расти с угрожающей быстротой. Этот факт очень важен при проектировании систем передачи данных. Если мы проектируем систему, в которой оборудование используется более чем на 80%, то незначительное увеличение трафика может привести к резкому спаду производительности системы или даже заставить ее работать в аварийном режиме.

    Увеличение входного трафика на небольшое число х%. приводит к увеличению размеров очереди приблизительно на

    Если коэффициент использования оборудования равен 50%, то это увеличение равно 4ts % для экспоненциального закона распределения времени обслуживания. Но если коэффициент использования оборудования равен 90%, то увеличение размера очереди равно 100ts %, что в 25 раз больше. Незначительное увеличение нагрузки при 90%-ном использовании оборудования приводит к 25-кратному увеличению размеров очереди по сравнению со случаем 50%-ного использования оборудования.

    Аналогично время пребывания в очереди увеличивается на

    При экспоненциально распределенном времени обслуживания эта величина имеет значение 4 t s 2 для коэффициента использования оборудования, равного 50%, и 100 t s 2 для коэффициента 90%, т. е. снова в 25 раз хуже.

    Кроме того, для малых коэффициентов использования оборудования влияние изменений σs на размер очереди незначительно. Однако для больших коэффициентов изменение σ s сильно сказывается на размере очереди. Поэтому при проектировании систем с высоким коэффициентом использования оборудования желательно получить точные сведения о параметре σ s . Неточность предположения относительно экспоненциальности распределения t s наиболее ощутима при больших значениях ρ. Более того, если вдруг время обслуживания возрастет, что возможно в каналах связи при передаче длинных сообщений, то в случае большого ρ образуется значительная очередь.

    Требуется решить задачи 1-3. Исходные данные приведены в табл. 2-4.

    Некоторые обозначения, применяемые в теории массового обслуживания, для формул:

    n - число каналов в СМО;

    λ - интенсивность входящего потока заявок П вх;

    v - интенсивность выходящего потока заявок П вых;

    μ - интенсивность потока обслуживания П об;

    ρ - показатель нагрузки системы (трафик);

    m - максимальное число мест в очереди, ограничивающее длину очереди заявок;

    i - число источников заявок;

    p к - вероятность k-го состояния системы;

    p о - вероятность простаивания всей системы, т. е. вероятность того, что все каналы свободны;

    p сист - вероятность принятия заявки в систему;

    p отк - вероятность отказа заявке в принятии ее в систему;

    р об - вероятность того, что заявка будет обслужена;

    А - абсолютная пропускная способность системы;

    Q - относительная пропускная способность системы;

    оч - среднее число заявок в очереди;

    об - среднее число заявок под обслуживанием;

    сист - среднее число заявок в системе;

    оч - среднее время ожидания заявки в очереди;

    об - среднее время обслуживания заявки, относящееся только к обслуженным заявкам;

    сис - среднее время пребывания заявки в системе;

    ож - среднее время, ограничивающее ожидание заявки в очереди;

    Среднее число занятых каналов.

    Абсолютная пропускная способность СМО А - среднее число заявок, которое может обслужить система за единицу времени.

    Относительная пропускная способность СМО Q - отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок.

    При решении задач массового обслуживания необходимо придерживаться нижеприведенной последовательности:

    1) определение типа СМО по табл. 4.1;

    2) выбор формул в соответствии с типом СМО;

    3) решение задачи;

    4) формулирование выводов по задаче.

    1. Схема гибели и размножения.

    Мы знаем, что, имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается последние уравнения решить заранее, в буквенном виде. В частности, это удается сделать, если граф состояний системы представляет собой так называемую «схему гибели и размножения».

    Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 1 , S 2 , …, S n-1) связано прямой и обратной стрелкой с каждым из соседних состояний — правым и левым, а крайние состояния (S 0 , S n) — только с одним соседним состоянием. Термин «схема гибели и размножения» ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.


    Схема гибели и размножения очень часто встречается в разных задачах практики, в частности — в теории массового обслуживания, поэтому полезно, один раз и навсегда, найти для нее финальные вероятности состояний.

    Предположим, что все потоки событии, переводящие систему по стрелкам графа,— простейшие (для краткости будем называть и систему S и протекающий в ней процесс — простейшими).

    Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состоянии), существование вытекает из того, что из каждого состояния можно перейти в каждое другое, в число состояний конечно).

    Для первого состояния S 0 имеем:

    (19.1)

    Для второго состояния S 1:

    В силу (19.1) последнее равенство приводится к виду

    где k принимает все значения от 0 до п. Итак, финальные вероятности p 0 , p 1 , ..., р n удовлетворяют уравнениям

    (19.2)

    кроме того, надо учесть нормировочное условие

    p 0 + p 1 + p 2 +…+ p n =1. (19.3)

    Решим эту систему уравнений. Из первого уравнения (19.2) выразим p 1 через р 0 :

    p 1 = p 0. (19.4)

    Из второго, с учетом (19.4), получим:

    (19.5)

    из третьего, с учетом (19.5),

    (19.6)

    и вообще, для любого k (от 1 до n ):

    (19.7)

    Обратим внимание на формулу (19.7). В числителе стоит произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния S k), а в знаменателе — произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до S k).

    Таким образом, все вероятности состояний р 0 , p 1 , ..., р n выражены через одну из них (р 0). Подставим эти выражения в нормировочное условие (19.3). Получим, вынося за скобку р 0:

    отсюда получим выражение для р 0 :

    (скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через р 0 (см. формулы (19.4) — (19.7)). Заметим, что коэффициенты при р 0 в каждой из них представляют собой не что иное, как последовательные члены ряда, стоящего после единицы в формуле (19.8). Значит, вычисляя р 0 , мы уже нашли все эти коэффициенты.

    Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.

    2. Формула Литтла .

    Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок L сист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе W сист.

    Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность λ.

    Обозначим: X(t} — число заявок, прибывших в СМО до момента t. Y (t ) число заявок покинувших СМО

    до момента t. И та, и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок (X (t )) и уходов заявок (Y(t)). Вид функций X(t) и Y(t) показан на рис. 19.2; обе линии — ступенчатые, верхняя — X(t), нижняя—Y(t). Очевидно, что для любого момента t их разность Z (t ) = X(t) — Y(t) есть не что иное, как число заявок, находящихся в СМО. Когда линии X(t) и Y(t) сливаются, в системе нет заявок.

    Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, деленному на длину интервала Т:

    L сист. = . (19.9) о

    Но этот интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько этот рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена t 1 , t 2 ,... Правда, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли.

    (19.10)

    где сумма распространяется на все заявки, пришедшие за время Т.

    Разделим правую и левую часть (.19.10) на длину интервала Т. Получим, с учетом (19.9),

    L сист. = . (19.11)

    Разделим и умножим правую часть (19.11) на интенсивность X:

    L сист. = .

    Но величина Тλ есть не что иное, как среднее число заявок, пришедших за время ^ Т. Если мы разделим сумму всех времен t i на среднее число заявок, то получим среднее время пребывания заявки в системе W сист. Итак,

    L сист. = λW сист. ,

    W сист. = . (19.12)

    Это и есть замечательная формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок.

    Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди ^ W оч и среднее число заявок в очереди L оч:

    W оч = . (19.13)

    Для вывода достаточно вместо нижней линии на рис. 19.2 взять функцию U(t) — количество заявок, ушедших до момента t не из системы, а из очереди (если заявка, пришедшая в систему, не становится в очередь, а сразу идет под обслуживание, можно все же считать, что она становится в очередь, но находится в ней нулевое время).

    Формулы Литтла (19.12) и (19.13) играют большую роль в теории массового обслуживания. К сожалению, в большинстве существующих руководств эти формулы (доказанные в общем виде сравнительно недавно) не приводятся 1).


    Простейшие системы массового обслуживания и их характеристики

    В этом параграфе мы рассмотрим, некоторые простейшие СМО и выведем выражения для их характеристик (показателей эффективности). При этом мы продемонстрируем основные методические приемы, характерные для элементарной, «марковской» теории массового обслуживания.

    Мы не будем гнаться за количеством образцов СМО, для которых будут выведены конечные выражения характеристик; данная книга — не справочник по теории массового обслуживания (такую роль гораздо лучше выполняют специальные руководства). Наша цель — познакомить читателя с некоторыми «маленькими хитростями», облегчающими путь сквозь теорию массового обслуживания, которая в ряде имеющихся (даже претендующих на популярность) книг может показаться бессвязным набором примеров.

    Все потоки событий, переводящие СМО из состояния в состояние, в данном параграфе мы будем считать простейшими (не оговаривая это каждый раз специально). В их числе будет и так называемый «поток обслуживании». Под ним разумеется поток заявок, обслуживаемых одним непрерывно занятым каналом. В этом потоке интервал между событиями, как и всегда в простейшем потоке, имеет показательное распределение (во многих руководствах вместо этого говорят: «время обслуживания — показательное», мы и сами в дальнейшем будем пользоваться таким термином).

    В популярной книжке дан несколько иной, по сравнению с вышеизложенным, вывод формулы Литтла. Вообще, знакомство с этой книжкой («Беседа вторая») полезно для первоначального ознакомления с теорией массового обслуживания.

    В данном параграфе показательное распределение времени обслуживания будет само собой разуметься, как всегда для «простейшей» системы.

    Характеристики эффективности рассматриваемых СМО мы будем вводить по ходу изложения.

    1. п - канальная СМО с отказами (задача Эрланга). Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в начале нашего века датским математиком Эрлантом. Задача ставится так: имеется п каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживании имеет интенсивность μ (величина, обратная среднему времени обслуживания t об).

    Найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

    ^ А — абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;

    Q — относительную пропускную способность, т. е. среднюю долю пришедших заявок, обслуживаемых системой;

    ^ Р отк — вероятность отказа, т. е. того, что заявка покинет СМО не обслуженной;

    k — среднее число занятых каналов.

    Решение. Состояния системы ^ S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):

    S 0 — в СМО нет ни одной заявки,

    S 1 — в СМО находится одна заявка (один канал занят, остальные свободны),

    S k — в СМО находится k заявок (k каналов заняты, остальные свободны),

    S n — в СМО находится п заявок (все n каналов заняты).

    Граф состояний СМО соответствует схеме гибели в размножения (рис. 20.1). Разметим этот граф — проставим у стрелок интенсивности потоков событий. Из S 0 в S 1 систему переводит поток заявок с интенсивностью λ (как только приходит заявка, система перескакивает из S 0 в S 1). Тот же поток заявок переводит систему из любого левого состояния в соседнее правое (см. верхние стрелки на рис. 20.1).

    Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии ^ S 1 (работает один канал). Он производит μ обслуживании в единицу времени. Проставляем у стрелки S 1 → S 0 интенсивность μ. Теперь представим себе, что система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы либо закончил обслуживание первый канал, либо второй; суммарная интенсивность их потоков обслуживании равна 2μ; проставляем ее у соответствующей стрелки. Суммарный поток обслуживании, даваемый тремя каналами, имеет интенсивность 3μ, k каналами — kμ. Проставляем эти интенсивности у нижних стрелок на рис. 20.1.

    А теперь, зная все интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения.

    По формуле (19.8) получим:

    Члены разложения будут представлять собой коэффициенты при р 0 в выражениях для p 1


    Заметим, что в формулы (20.1), (20.2) интенсивности λ и μ входят не по отдельности, а только в виде отношения λ/μ. Обозначим

    λ/μ = ρ (20.3)

    И будем называть величину р «приведенной интенсивностью потока заявок». Ее смысл —среднее число заявок, приходящее за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулы (20.1), (20.2) в виде:

    Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга — в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен.

    Таким образом, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем ^ Р отк . — вероятность того, что пришедшая заявка получит отказ (не будет обслужена). Для этого нужно, чтобы все п каналов были заняты, значит,

    Р отк = р n = . (20.6)

    Отсюда находим относительную пропускную способность — вероятность того, что заявка будет обслужена:

    Q = 1 - P отк. = 1 - (20.7)

    Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ, на Q:

    A = λQ = λ. (20.8)

    Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0, 1, ..., п и вероятностями этих значений р 0 р 1 , ..., р n:

    k = 0 · р 0 + 1 · p 1 + 2 · р 2 + ... + п · р n .

    Подставляя сюда выражения (20.5) для р k , (k = 0, 1, ..., п) и выполняя соответствующие преобразования, мы, в конце концов, получили бы верную формулу для k. Но мы выведем ее гораздо проще (вот она, одна из «маленьких хитростей»!) В самом деле, нам известна абсолютная пропускная способность А. Это — не что иное, как интенсивность потока обслуженных системой заявок. Каждый занятый i .шал в единицу времени обслуживает в среднем |л заявок. Значит, среднее число занятых каналов равно

    k = A/μ, (20.9)

    или, учитывая (20.8),

    k = (20.10)

    Рекомендуем читателю самостоятельно решить пример. Имеется станция связи с тремя каналами (n = 3), интенсивность потока заявок λ = 1,5 (заявки в минуту); среднее время обслуживания одной заявки t об = 2 (мин.), все потоки событий (как и во всем этом параграфе) — простейшие. Найти финальные вероятности состояний и характеристики эффективности СМО: А, Q, P отк, k. На всякий случай сообщаем ответы: p 0 = 1/13, p 1 = 3/13, p 2 = 9/26, р 3 = 9/26 ≈ 0,346,

    А ≈ 0,981, Q ≈ 0,654, P отк ≈ 0,346, k ≈ 1,96.

    Из ответов видно, между прочим, что наша СМО в значительной мере перегружена: из трех каналов занято в среднем около двух, а из поступающих заявок около 35% остаются не обслуженными. Предлагаем читателю, если он любопытен и неленив, выяснить: сколько потребуется каналов для того, чтобы удовлетворить не менее 80% поступающих заявок? И какая доля каналов при этом будет простаивать?

    Тут уже проглядывает некоторый намек на оптимизацию. В самом деле, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая этот доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов этот доход растет, но растут и расходы, связанные с содержанием каналов.

    Что перевесит — увеличение доходов или расходов? Это зависит от условий операции, от «платы за обслуживание заявки» и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя все тому же «неленивому и любопытному читателю» придумать пример и решить. Вообще, придумывание задач больше развивает, чем решение уже поставленных кем-то.

    Одноканальная СМО с неограниченной очередью.

    На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

    Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживании имеет интенсивность μ, обратную среднему времени обслуживания заявки t об.

    Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

    L сист. среднее число заявок в системе,

    W сист. — среднее время пребывания заявки в системе,

    ^ L оч — среднее число заявок в очереди,

    W оч среднее время пребывания заявки в очереди,

    P зан вероятность того, что канал занят (степень загрузки канала).

    Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности:

    в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому А = λ, по той же причине Q = 1.

    Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

    S 0 канал свободен,

    S 1 — канал занят (обслуживает заявку), очереди нет,

    S 2 — канал занят, одна заявка стоит в очереди,

    S k — канал занят, k — 1 заявок стоят в очереди,

    Теоретически число состояний ничем не ограничено (бесконечно). Граф состоянии имеет вид, показанный на рис. 20.2. Это — схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево — поток обслуживании с интенсивностью μ.

    Прежде всего спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t → ∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если ρ строго меньше единицы (ρ< 1), то финальные вероятности существуют, а при ρ ≥ 1 очередь при t → ∞ растет неограниченно.

    Особенно «непонятным» кажется этот факт при ρ = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле — не так. При ρ = 1 СМО справляется с потоком заявок, только если поток этот — регулярен, и время обслуживания — тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки.

    Но стоит только потоку заявок или потоку обслуживании стать хотя бы чуточку случайными — и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» — абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

    Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность — воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для р 0:

    p 0 = -1 = (1 + р + р 2 + ... + р k +… .) -1 . (20.11)

    Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ρ < 1 ряд сходится — это бесконечно убывающая геометрическая прогрессия со знаменателем р. При р ≥ 1 ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний р 0 , p 1 , ..., p k , ... существуют только при р<1).

    Теперь предположим, что это условие выполнено, и ρ1 + ρ + ρ 2 + ... + ρ k + ... = ,

    p 0 = 1 - ρ. (20.12)

    Вероятности р 1 , р 2 , ..., р k , ... найдутся по формулам:

    p 1 = ρp 0 , p 2 = ρ 2 p 0 ,…,p k = ρp 0 , ...,

    Откуда, с учетом (20.12), найдем окончательно:

    p 1 = ρ (1 - ρ), p 2 = ρ 2 (1 - ρ), . . . , p k = ρ k (1 - ρ), . . .(20.13)

    Как видно, вероятности p 0 , p 1 , ..., p k , ... образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р 0 — вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок (ρ<1), самое вероятное число заявок в системе будет 0.

    Найдем среднее число заявок в СМО ^ L сист . . Тут придется немного повозиться. Случайная величина Z — число заявок в системе — имеет возможные значения 0, 1, 2, .... k, ... с вероятностями p 0 , р 1 , р 2 , ..., p k , ... Ее математическое ожидание равно

    L сист = 0 ? p 0 + 1 ? p 1 + 2 ? p 2 +…+k ? p k +…= (20.14)

    (сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

    Подставим в формулу (20.14) выражение для p k (20.13):

    L сист. =

    Теперь вынесем за знак суммы ρ (1-ρ):

    L сист. = ρ (1-ρ)

    Тут мы опять применим «маленькую хитрость»: k ρ k -1 есть не что иное, как производная по ρ от выражения ρ k ; значит,

    L сист. = ρ (1-ρ)

    Меняя местами операции дифференцирования п суммирования, получим:

    L сист. = ρ (1-ρ) (20.15)

    Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом ρ и знаменателем ρ; эта сумма

    равна , а ее производная . Подставляя это выражение в (20.15), получим:

    L сист = . (20.16)

    Ну, а теперь применим формулу Литтла (19.12) и найдем среднее время пребывания заявки в системе:

    W сист = (20.17)

    Найдем среднее число заявок в очереди L оч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди L оч равно среднему числу заявок в системе L сист минус среднее число заявок под обслуживанием.

    Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Р зан). Очевидно, Р зан равно единице минус вероятность р 0 того, что канал свободен:

    Р зан = 1 - р 0 = ρ. (20.18)

    Следовательно, среднее число заявок под обслуживанием равно

    ^ L об = ρ, (20.19)

    L оч = L сист - ρ =

    и окончательно

    L оч = (20.20)

    По формуле Литтла (19.13) найдем среднее время пребывания заявки в очереди:

    (20.21)

    Таким образом, все характеристики эффективности СМО найдены.

    Предложим читателю самостоятельно решить пример: одноканальная СМО представляет собой железнодорожную сортировочную станцию, на которую поступает простейший поток составов с интенсивностью λ = 2 (состава в час). Обслуживание (расформирование)

    состава длится случайное (показательное) время со средним значением t об = 20 (мин.). В парке прибытия станции имеются два пути, на которых могут ожидать обслуживания прибывающие составы; если оба пути заняты, составы вынуждены ждать на внешних путях.

    Требуется найти (для предельного, стационарного режима работы станции): среднее, число составов l сист, связанных со станцией, среднее время W сист пребывания состава при станции (на внутренних путях, на внешних путях и под обслуживанием), среднее число L оч составов, ожидающих очереди на расформирование (все равно, на каких путях), среднее время W оч пребывания состава на очереди. Кроме того, попытайтесь найти среднее число составов, ожидающих расформирования на внешних путях L внеш и среднее время этого ожидания W внеш (две последние величины связаны формулой Литтла).

    Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: L сист. = 2 (состава), W сист. = 1 (час), L оч = 4/3 (состава), W оч = 2/3 (часа), L внеш = 16/27 (состава), W внеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а : Ш ≈ 14,2а .

    re-канальная СМО с неограниченной очередью.

    Совершенно аналогично задаче 2, но чуточку более сложно, решается задача об n -канальной СМО с неограниченной очередью.

    μ 2μ kμ (k+1)μ nμ nμ nμ nμ nμ

    Есть схема гибели и размножения, но с бесконечным числом состояний. Сообщим без доказательства естественное условие существования финальных вероятностей: ρ/n n ≥ 1, очередь растет до бесконечности.

    Предположим, что условие ρ/n < 1 выполнено, и финальные вероятности существуют. Применяя все те же формулы (19.8), (19.7) для схемы гибели и размножения, найдем эти финальные вероятности. В выражении для р 0 будет стоять ряд членов, содержащих факториалы, плюс сумма бесконечно убывающей геометрической прогрессии со знаменателем ρ/n . Суммируя ее, найдем

    (20.22)

    Теперь найдем характеристики эффективности СМО. Из них легче всего находится среднее число занятых каналов k = λ/μ, = ρ (это вообще справедливо для любой СМО с неограниченной очередью). Найдем среднее число заявок в системе L сист и среднее число заявок в очереди L оч. Из них легче вычислить второе, по формуле

    L оч =

    выполняя соответствующие преобразования по образцу задачи 2

    (с дифференцированием ряда), получим:

    L оч = (20.23)

    Прибавляя к нему среднее число заявок под обслуживанием (оно же — среднее число занятых каналов) k = ρ, получим:

    L сист = L оч + ρ. (20.24)

    Деля выражения для L оч и L сист на λ, по формуле Литтла получим средние времена пребывания заявки в очереди и в системе:

    (20.25)

    А теперь решим любопытный пример. Железнодорожная касса по продаже билетов с двумя окошками представляет собой двухканальную СМО с неограниченной очередью, устанавливающейся сразу к двум окошкам (если одно окошко освобождается, ближайший в очереди пассажир его занимает). Касса продает билеты в два пункта: А и В. Интенсивность потока заявок (пассажиров, желающих купить билет) для обоих пунктов А и В одинакова: λ А = λ В = 0,45 (пассажира в минуту), а в сумме они образуют общий поток заявок с интенсивностью λ А + λ В = 0,9. Кассир тратит на обслуживание пассажира в среднем две минуты.

    Опыт показывает, что у кассы скапливаются очереди, пассажиры жалуются на медленность обслуживания, Поступило рационализаторское предложение: вместо одной кассы, продающей билеты и в А и в В, создать две специализированные кассы (по одному окошку в каждой), продающие билеты одна — только в пункт А , другая — только в пункт В. Разумность этого предложения вызывает споры — кое-кто утверждает, что очереди останутся прежними. Требуется проверить полезность предложения расчетом. Так как мы умеем считать характеристики только для простейших СМО, допустим, что все потоки событий — простейшие (на качественной стороне выводов это не скажется).

    Ну, что же, возьмемся за дело. Рассмотрим два варианта организации продажи билетов — существующий и предлагаемый.

    Вариант I (существующий). На двухканальную СМО поступает поток заявок с интенсивностью λ = 0,9; интенсивность потока обслуживании μ = 1/2 = 0,5; ρ = λ/μ = l,8. Так как ρ/2 = 0,9<1, финальные вероятности существуют. По первой формуле (20.22) находим р 0 ≈ 0,0525. Среднее, число заявок в очереди находим по формуле (20.23): L оч ≈ 7,68; среднее время, проводимое заявкой в очереди (по первой из формул (20.25)), равно W оч ≈ 8,54 (мин.).

    Вариант II (предлагаемый). Надо рассмотреть две одноканальные СМО (два специализированных окошка); на каждую поступает поток заявок с интенсивностью λ = 0,45; μ. по-прежнему равно 0,5; ρ = λ/μ = 0,9<1; финальные вероятности существуют. По формуле (20.20) находим среднюю длину очереди (к одному окошку) L оч = 8,1.

    Вот тебе и раз! Длина очереди, оказывается, не только не уменьшилась, а увеличилась! Может быть, уменьшилось среднее время ожидания в очереди? Посмотрим. Деля L оч на λ = 0,45, получим W оч ≈ 18 (минут).

    Вот так рационализация! Вместо того чтобы уменьшиться, и средняя длина очереди, и среднее время ожидания в ней увеличились!

    Давайте попробуем догадаться, почему так произошло? Пораскинув мозгами, приходим к выводу: произошло это потому, что в первом варианте (двухканальная СМО) меньше средняя доля времени, которую простаивает каждый из двух кассиров: если он не занят обслуживанием пассажира, покупающего билет в пункт А, он может заняться обслуживанием пассажира, покупающего билет в пункт В, и наоборот. Во втором варианте такой взаимозаменяемости нет: незанятый кассир просто сидит, сложа руки...

    — Ну, ладно,— готов согласиться читатель,— увеличение можно объяснить, но почему оно такое существенное? Нет ли тут ошибки в расчете?

    И на этот вопрос мы ответим. Ошибки нет. Дело в том, что в нашем примере обе СМО работают на пределе своих возможностей; стоит немного увеличить время обслуживания (т. е. уменьшить μ), как они уже перестанут справляться с потоком пассажиров, и очередь начнет неограниченно возрастать. А «лишние простои» кассира в каком-то смысле равносильны уменьшению его производительности μ.

    Таким образом, кажущийся сначала парадоксальным (или даже просто неверным) результат вычислений оказывается на поверку правильным и объяснимым.

    Такого рода парадоксальными выводами, причина которых отнюдь не очевидна, богата теория массового обслуживания. Автору самому неоднократно приходилось «удивляться» результатам расчетов, которые потом оказывались правильными.

    Размышляя над последней задачей, читатель может поставить вопрос так: ведь если касса продает билеты только в один пункт, то, естественно, время обслуживания должно уменьшиться, ну, не вдвое, а хоть сколько-нибудь, а мы считали, что оно по-прежнему в среднем равно 2 (мин.). Предлагаем такому придирчивому читателю ответить на вопрос: а насколько надо его уменьшить, чтобы «рационализаторское предложение» стало выгодным?

    Снова мы встречаемся хотя и с элементарной, но все же задачей оптимизации. С помощью ориентировочных расчетов даже на самых простых, марковских моделях удается прояснить качественную сторону явления — как выгодно поступать, а как — невыгодно. В следующем параграфе мы познакомимся с некоторыми элементарными немарковскими моделями, которые еще расширят наши возможности.

    После того, как читатель ознакомился с приемами вычисления финальных вероятностей состояний и характеристик эффективности для простейших СМО (овладел схемой гибели и размножения и формулой Литтла), ему можно предложить для самостоятельного рассмотрения еще две простейшие СМО.

    Одноканальная СМО с ограниченной очередью. Задача отличается от задачи 2 только тем, что число заявок в очереди ограничено (не может превосходить некоторого заданного т). Если новая заявка приходит в момент, когда все места в очереди заняты, она покидает СМО не обслуженной (получает отказ).

    Надо найти финальные вероятности состояний (кстати, они в этой задаче существуют при любом ρ — ведь число состояний конечно), вероятность отказа Р отк, абсолютную пропускную способность А, вероятность того, что канал занят Р зан, среднюю длину очереди L оч, среднее число заявок в СМО L сист , среднее время ожидания в очереди W оч , среднее время пребывания заявки в СМО W сист. При вычислении характеристик очереди можно пользоваться тем же приемом, какой мы применяли в задаче 2, с той разницей, что суммировать надо не бесконечную прогрессию, а конечную.

    Замкнутая СМО с одним каналом и m источниками заявок. Для конкретности поставим задачу в следующей форме: один рабочий обслуживает т станков, каждый из которых время от времени требует наладки (исправления). Интенсивность потока требований каждого работающего станка равна λ. Если станок вышел из строя в момент, когда рабочий свободен, он сразу же поступает на обслуживание.

    Если он вышел из строя в момент, когда рабочий занят, он становится в очередь и ждет, пока рабочий освободится. Среднее время наладки станка t об = 1/μ. Интенсивность потока заявок, поступающих к рабочему, зависит от того, сколько станков работает. Если работает k станков, она равна k λ. Найти финальные вероятности состояний, среднее число работающих станков и вероятность того, что рабочий будет занят.

    Заметим, что и в этой СМО финальные вероятности будут существовать при любых значениях λ и μ = 1/t об, так как число состояний системы конечно.

    Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

    1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
    2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

    Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

    Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

    Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

    Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

    Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

    Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

    Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

    В качестве характеристик СМО рассматриваются:

    • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
    • среднее время «простоя» отдельных каналов и системы в целом;
    • среднее время ожидания в очереди;
    • вероятность того, что поступившая заявка будет немедленно обслужена;
    • закон распределения длины очереди и другие.

    Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

    3.1 Модели систем массового обслуживания.

    Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

    a - распределение входного потока заявок;

    b - распределение выходного потока заявок;

    c – конфигурация обслуживающего механизма;

    d – дисциплина очереди;

    e – блок ожидания;

    f – емкость источника.

    Теперь рассмотрим подробнее каждую характеристику.

    Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

    Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

    Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

    1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
    2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
    3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

    Таким образом, можно выделить одно- и многоканальные СМО.

    С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

    Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

    Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

    1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
    2. ПОСППО (последним пришел – первым обслуживаешься);
    3. СОЗ (случайный отбор заявок) – из банка данных.
    4. ПР – обслуживание с приоритетом.

    Длина очереди может быть

    • неограничена – тогда говорят о системе с чистым ожиданием;
    • равна нулю – тогда говорят о системе с отказами;
    • ограничена по длине (система смешанного типа).

    Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

    Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

    Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

    3.2 Входной поток требований.

    С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

    Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

    Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

    Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

    Поток называется простейшим , если он стационарный, без последействия и ординарный.

    Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

    Следствие 1 . Простейший поток также называется пуассоновским.

    Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

    Рассмотрим ПРИМЕР.

    В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

    Решение.

    По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

    ^

    3.3 Состояние системы. Матрица и граф переходов.

    В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

    Е 0 – все каналы свободны;

    Е 1 – занят один канал;

    Е n – заняты все каналы;

    Е n +1 – заняты все каналы и одна заявка в очереди;

    Е n + m – заняты все каналы и все места в очереди.

    Аналогичная система с отказами может находиться в состояниях E 0 E n .

    Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

    С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

    Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

    Рисунок 3.1 – граф переходов

    Сост. Е 0 Е 1 Е 2
    Е 0 Р 0,0 Р 0,1 Р 0,2
    Е 1 Р 1,0 Р 1,1 Р 1,2
    Е 2 Р 2,0 Р 2,2 Р 2,2

    Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

    Так как система обязательно перейдет из одного

    состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

    3.4 Одноканальные СМО.

    3.4.1 Одноканальные СМО с отказами.

    Будем рассматривать системы, удовлетворяющие требованиям:

    (Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

    Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

    А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

    А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

    А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

    Таким образом, получим матрицу переходов:

    Сост. Е 0 Е 1
    Е 0 1-l* Dt l* Dt
    Е 1 m* Dt 1-m* Dt

    Вероятность простоя и отказа системы.

    Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
    изображен на рисунке 3.2.

    Асимптотой графика является прямая
    .

    Очевидно, начиная с некоторого момента t ,


    1

    Рисунок 3.2

    Окончательно получим, что
    и
    , где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

    Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

    Стационарный режим работы и коэффициент загрузки системы.

    Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
    называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
    ,
    . Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

    На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

    Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
    .

    3.4.2 Одноканальные СМО с неограниченной длиной очереди.

    Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

    решая которую найдем, что . Таким образом, при условии, что y <1, получим
    Окончательно,
    и
    – вероятность нахождения СМО в состоянии Е k в случайный момент времени.

    Средние характеристики системы.

    За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

    • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
    • v – длину очереди;
    • w – время ожидания начала обслуживания;
    • w 0 – общее время нахождения в системе.

    Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

    – среднее число заявок в системе.

    – средняя длина очереди.

    – среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

    – среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

    На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

    Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
    , средняя длина очереди
    , среднее время ожидания начала обслуживания
    часа = 50 мин, и, наконец, среднее время нахождения в системе
    час.

    3.4.3 Одноканальные СМО смешанного типа.

    Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
    , т.е. одна заявка обслуживается и еще s заявок – в очереди.

    Вероятность простоя системы равна
    ,

    а вероятность отказа системы -
    .

    Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

    Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
    . Для системы с чистым ожиданием
    . Для системы с ограниченной длиной очереди
    . Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

    3.5 Многоканальные СМО.

    3.5.1 Многоканальные СМО с отказами.

    Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
    , где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

    , k=0, 1, …

    Функция стоимости.

    Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
    . Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

    Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

    Рисунок 3.3

    Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

    ПРИМЕР.

    Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

    Решение. y = 2/1=2. с 1 =7, с 2 =2.

    Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
    . Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

    Предположим, что s =3. Тогда
    , С(3) = с 1 *l* p 3 2 *
    =5.79.

    Предположим, что имеется четыре канала, т.е. s =4. Тогда
    ,
    , С(4) = с 1 *l* p 4 2 *
    =5.71.

    Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
    , С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

    3.5.2 Многоканальные СМО с очередью.

    Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

    P(w>0) – вероятность ожидания начала обслуживания,
    .

    Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

    ПРИМЕР.

    СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

    Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
    ,
    .

    Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

    Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

    3.6 Вопросы для самоконтроля

    1. Предмет и задачи теории массового обслуживания.
    2. СМО, их модели и обозначения.
    3. Входной поток требований. Интенсивность входного потока.
    4. Состояние системы. Матрица и граф переходов.
    5. Одноканальные СМО с отказами.
    6. Одноканальные СМО с очередью. Характеристики.
    7. Стационарный режим работы. Коэффициент загрузки системы.
    8. Многоканальные СМО с отказами.
    9. Оптимизация функции стоимости.
    10. Многоканальные СМО с очередью. Характеристики.

    3.7 Упражнения для самостоятельной работы

    1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
    2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
    3. Время обслуживания в СМО подчиняется экспоненциальному закону,
      m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
    4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
    5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
    6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
    7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
    8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
    9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
    10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
    11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
    12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
    13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

    1. Одноканальная СМО с отказами.

    Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании.

    Интенсивность потока автомобилей = 1,0 (автомобиль в час).

    Средняя продолжительность обслуживания - 1,8 часа.

    Поток автомобилей и поток обслуживания являются простейшими.

    Требуется определить в установившемся режиме предельные значения:

    Относительной пропускной способности q ;

    Абсолютной пропускной способности А ;

    Вероятности отказа P отк .

    Необходимо сравнить фактическую пропускную способность СМО с номинальной , которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

    2. Одноканальная СМО с ожиданием

    Характеристика системы

    Ø СМО имеет один канал.

    Ø Входящий поток заявок на обслуживание - простейший поток с интенсивностью.

    Ø Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок).

    Ø Длительность обслуживания - случайная величина, подчиненная показательному закону распределения.

    Ø Поток обслуживания является простейшим пуассоновским потоком событий.



    Ø Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

    Граф состояний

    Состояния СМО имеют следующую интерпретацию:

    S 0 - «канал свободен»;

    S 1 - «канал занят» (очереди нет);

    S 2 - «канал занят» (одна заявка стоит в очереди);

    …………………………………………………….

    Sn - «канал занят» (n -1 заявок стоит в очереди);

    SN - «канал занят» (N - 1 заявок стоит в очереди).

    Стационарный процесс в данной системе описывается следующей системой алгебраических уравнений:

    Решением системы уравнений является:

    3. Одноканальная СМО с ограниченной очередью.

    Длина очереди:(N - 1)

    Характеристики системы:

    1. Вероятность отказа в обслуживании системы:

    2. Относительная пропускная способность системы:

    3. Абсолютная пропускная способность системы:

    4. Среднее число находящихся в системе заявок:

    5. Среднее время пребывания заявки в системе:

    6. Средняя продолжительность пребывания клиента (заявки) в очереди:

    7. Среднее число заявок (клиентов) в очереди (длина очереди):

    Пример.

    Специализированный пост диагностики представляет собой одноканальную СМО.

    Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится.

    Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 0,85 (автомобиля в час).

    Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

    4. Одноканальная СМО с ожиданием

    без ограничения на длину очереди

    Условия функционирования СМО остаются без изменений с учетом того, что N .

    Стационарный режим функционирования такой СМО существует:

    для любого n = 0, 1, 2, ... и когда λ < μ .

    Система уравнений, описывающих работу СМО:

    Решение системы уравнений имеет вид:


    2. Средняя продолжительность пребывания клиента в системе:

    3. Среднее число клиентов в очереди на обслуживании:

    4. Средняя продолжительность пребывания клиента в очереди:

    Пример.

    Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, не ограниченно. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

    Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

    В результате решения задачи необходимо определить финальные значения следующих вероятностных характеристик:

    ü вероятности состояний системы (поста диагностики);

    ü среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

    ü среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

    ü среднее число автомобилей в очереди на обслуживании;

    ü среднюю продолжительность пребывания автомобиля в очереди.

    1. Параметр потока обслуживания и приведенная интенсивность потока автомобилей:

    μ = 0,952; ψ = 0,893.

    2. Предельные вероятности состояния системы:

    P 0 (t ) определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В примере эта доля составляет 10,7%, так как P 0 (t ) = 0,107.

    3. Среднее число автомобилей, находящихся в системе

    (на обслуживании и в очереди):


    4. Средняя продолжительность пребывания клиента в системе

    5. Среднее число автомобилей в очереди на обслуживание:

    6. Средняя продолжительность пребывания автомобиля в очереди:

    7. Относительная пропускная способность системы:

    q = 1, т. е. каждая заявка, пришедшая в систему, будет обслужена.

    8. Абсолютная пропускная способность:

    Презентационное оформление материала представлено в файле «ТМО»

    Вопросы и задачи

    (по Афанасьеву М.Ю. )

    Вопрос 1. Одна работница обслуживает тридцать ткацких станков, обеспечивая их запуск после разрыва нити. Модель такой системы массового обслуживания можно охарактеризовать как:

    1) многоканальную однофазовую с ограниченной популяцией;

    2) одноканальную однофазовую с неограниченной популяцией;

    3) одноканальную многофазовую с ограниченной популяцией;

    4) одноканальную однофазовую с ограниченной популяцией;

    5) многоканальную однофазовую с неограниченной популяцией.

    Вопрос 2. В теории массового обслуживания для описания простейшего потока заявок, поступающих на вход системы, используется распределение вероятностей:

    1) нормальное;

    2) экспоненциальное;

    3) пуассоновское;

    4) биномиальное;

    Вопрос 3. В теории массового обслуживания предполагается, что количество заявок в популяции является:

    1) фиксированным или переменным;

    2) ограниченным или неограниченным;

    3) известным или неизвестным;

    4) случайным или детерминированным;

    5) ничто из вышеуказанного не является верным.

    Вопрос 4. Двумя основными параметрами, которые определяют конфигурацию системы массового обслуживания, являются:

    1) темп поступления и темп обслуживания;

    2) длина очереди и правило обслуживания;

    3) распределение времени между заявками и распределение времени обслуживания;

    4) число каналов и число фаз обслуживания;

    5) ничто из вышеуказанного не является верным.

    Вопрос 5. В теории массового обслуживания для описания времени, затрачиваемого на обслуживание заявок, обычно используется распределение вероятностей:

    1) нормальное;

    2)экспоненциальное;

    3) пуассоновское;

    4) биномиальное;

    5) ничто из вышеуказанного не является верным.

    Вопрос 6. Ремонт вышедших из строя компьютеров на эконо­мическом факультете осуществляют три специалиста, работающие одновременно и независимо друг от друга. Модель такой системы массового обслуживания можно охарактеризовать как:

    1) многоканальную с ограниченной популяцией;

    2) одноканальную с неограниченной популяцией;

    3) одноканальную с ограниченной популяцией;

    4) одноканальную с ограниченной очередью;

    5) многоканальную с неограниченной популяцией.

    Ответы на вопросы : 1 -4, 2 - 3, 3 -2, 4 -4, 5 -2, 6 -1.


    СЕТЕВОЕ ПЛАНИРОВАНИЕ И УПРАВЛЕНИЕ

    Системы сетевого планирования и управления (СПУ) представляют особую разновидность систем организованного управления, предназначенных для регулирования производственной деятельности коллективов. Как и в других системах этого класса, «объектом управления» в системах СПУ является коллектив исполнителей, располагающих определенными ресурсами: людскими, материальными, финансовыми. Однако, данным системам присущ ряд особенностей, так как их методологическую основу составляют методы исследования операций, теория ориентированных графов и некоторые разделы теории вероятностей и математической статистики. Необходимым свойством системы планирования и управления является также способность оценивать текущее состояние, предсказывать дальнейший ход работ и таким образом воздействовать на ход подготовки и производства, чтобы весь комплекс работ был выполнен в заданные сроки и с наименьшими затратами.

    В настоящее время модели и методы СПУ широко используются при планировании и осуществлении строительно-монтажных работ, планировании торговой деятельности, составлении бухгалтерских отчетов, разработке торгово-финансового плана и т.д.

    Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и создание крупного территориально-промышленного комплекса).

    Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.




    © 2024
    womanizers.ru - Журнал современной женщины