30.09.2019

Научно-исследовательский проект «Формула Пика в геометрии клетчатой бумаги. Творческая работа " применение формулы пика"


Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат).

Теорема Пика

Формула

Пусть дан некоторый решётчатый многоугольник, с ненулевой площадью.

Обозначим его площадь через ; количество точек с целочисленными координатами, лежащих строго внутри многоугольника — через ; количество точек с целочисленными координатами, лежащих на сторонах многоугольника — через .

Тогда справедливо соотношение, называемое формулой Пика :

В частности, если известны значения I и B для некоторого многоугольника, то его площадь можно посчитать за , даже не зная координат его вершин.

Это соотношение открыл и доказал австрийский математик Георг Александр Пик (Georg Alexander Pick) в 1899 г.

Доказательство

Доказательство производится в несколько этапов: от самых простых фигур до произвольных многоугольников:

Обобщение на высшие размерности

К сожалению, эта столь простая и красивая формула Пика плохо обобщается на высшие размерности.

Наглядно показал это Рив (Reeve), предложив в 1957 г. рассмотреть тетраэдр (называемый теперь тетраэдром Рива ) со следующими вершинами:




где — любое натуральное число. Тогда этот тетраэдр при любых не содержит внутри ни одной точки с целочисленными координатами, а на его границе — лежат только четыре точки , , , и никакие другие. Таким образом, объём и площадь поверхности этого тетраэдра могут быть разными, в то время как число точек внутри и на границе — неизменны; следовательно, формула Пика не допускает обобщений даже на трёхмерный случай.

Тем не менее, некоторое подобное обобщение на пространства большей размерности всё же имеется, — это многочлены Эрхарта (Ehrhart Polynomial), но они весьма сложны, и зависят не только от числа точек внутри и на границе фигуры.

Введение
Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» учителем были предложены задачи на нахождение площади многоугольника на клетчатой бумаге. Возникли вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно - измерительных материалах ОГЭ и ЕГЭ, решил обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры. Оказывается, задачи на клетчатой бумаге являются обширным классом математических задач. Решения таких задач оригинальны, красивы и часто решаются проще и быстрее, чем аналитическим путем. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научился вычислять площади многоугольников, нарисованных на клетчатом листке.
Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.
Так и была определена тема для исследования.

Объект исследования: формула Пика.

Предмет исследования: применение формулы Пика при решении задач, на нахождение площади фигур, изображённых на клетчатой бумаге.

Цель исследования
1. Изучение формулы Пика.
2. Расширение знаний о многообразии задач на клетчатой бумаге, о приёмах и методах решения этих задач.

Задачи:
1.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
2.Проанализировать и систематизировать полученную информацию
3.Создать презентацию работы для представления собранного материала одноклассникам
4.Сделать выводы по результатам работы.
5.Подобрать наиболее интересные, наглядные примеры.

Методы исследования:
1. Моделирование.
2. Построение.
3. Анализ и классификация информации.
4. Сравнение, обобщение.
5. Изучение литературных и Интернет-ресурсов

Гипотеза: Вычисление площади фигуры по формуле Пика обеспечит правильное и быстрое решение задачи по сравнению с вычислением площади фигуры по формулам планиметрии.

Исследование формулы Пика.
Формула Пика. Решетки. Узлы.

При решении задач на клетчатой бумаге необходимы понятия решетки и узла.
Клетчатая бумага (точнее — ее узлы), на которой мы часто предпочитаем рисовать и чертить, является одним из важнейших примеров точечной решетки на плоскости.
Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты (Рис. 1). Любой из этих квадратов называется фундаментальным квадратом или квадратом, порождающим решетку. Множество всех точек
Рис. 1. пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки - узлами решетки.
Чтобы оценить площадь многоугольника на клетчатой бумаге (Рис.1), достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки принимаем за единицу).
А также, площадь любого многоугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Чтобы вычислить площадь многоугольника, изображенного на рисунке, необходимо достроить его до прямоугольника ABCD, вычислить площадь прямоугольника ABCD, найти площадь заштрихованной фигуры как сумму площадей треугольников и прямоугольников её составляющих, вычесть её из площади прямоугольника. И хотя многоугольник и выглядит достаточно просто, для вычисления его площади нам придется потрудиться. А если бы многоугольник выглядел более причудливо, как на следующих рисунках?

Оказывается, площади многоугольников, вершины которых расположены в узлах решетки, можно вычислять гораздо проще: есть формула, связывающая их площадь с количеством узлов, лежащих внутри и на границе многоугольника. Эта замечательная и простая формула называется формулой Пика: S = В + Г/2 - 1, где S - площадь многоугольника, В - число узлов решетки, расположенных строго внутри многоугольника, Г - число узлов решетки, расположенных на его границе, включая вершины. Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах решетки.
Но рассмотренный выше вывод формулы был без доказательства, не отвечал на вопрос: Почему? Вместе с учителем мы рассмотрели много литературы по данной проблеме.
В книге В.В.Вавилова, А.В.Устинова «Многоугольники на решетках» нам наконец удалось найти понравившееся нам доказательство формулы через сумму углов.

Доказательство формулы Пика.
Пусть В - число узлов решетки, расположенных строго внутри многоугольника, Г - число узлов решетки, расположенных на его границе, включая вершины, — его площадь. Тогда справедлива формула Пика: S=В+Г/2-1.
Пример 1. Вычислить площадь многоугольника, изображенного на клетчатой бумаге по формуле Пика.
S = В + Г/ 2 - 1
В = 14, Г = 8, S = 14 + 8/2 -1= 17 (кв.ед.)

Покажу справедливость формулы Пика. Сначала заметим, что формула Пика верна для единичного квадрата.
Действительно, в этом случае имеем: В=0, Г=4 иS=0+4/2-1=1.

Фундаментальный квадрат порождает решетку, то есть решетку можно построить следующим образом. Отметим вершины квадрата. Затем сдвинем его параллельно одной из его сторон на длину этой стороны и отметим две вновь полученные вершины. Если этот процесс продолжать сначала в одном направлении до длины a, а затем полученную полоску сдвинем параллельно себе в направлении другой стороны квадрата на длину этой стороны до длины b, то получим решетку.

Причем, число узлов решетки, лежащих внутри решетки, В = (а-1)(b-1), а число узлов решетки, расположенных на его границе, Г = 2a + 2b.
Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и. Имеем в этом случае, В=(а-1)(b-1), Г=2a+2b, тогда по формуле Пика S= (a -1)(b-1) +(2a+2b)/2 -1 = ab-a-b+1+a+b-1=ab. Получили формулу площади прямоугольника со сторонами a, b.
Рассмотрим теперь прямоугольный треугольник с катетами a и b. Такой треугольник получается из прямоугольника со сторонами a и b, рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат c целочисленных точек. Тогда для этого случая, В= ((а-1)(b-1)-c+2 ,)/2 Г=(2a+2b)/2+с-1 и получаем, что S = ((a-1)(b-1)-c+2)/2 + (a+b+c-1)/2 -1 = ab/2- a/2 - b/2 - c/2 + 3/2 +a/2 + b/2 + c/2 - 1/2 - 1 = ab/2. Таким образом, получили формулу для вычисления площади прямоугольного треугольника. Значит, формула Пика верна для прямоугольного треугольника.
Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (Рис.2). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Кто же такой Георг Александер Пик?
Австрийский математик Георг Александер Пик родился 10 августа 1859 году в Вене. Его отец, будучи руководителем частного института, предпочел до 11 лет обучать мальчика на дому, а потом отдал его сразу в четвертый класс гимназии, которую он окончил в 1875 году.
В 16 лет Георг поступил в Венский университет. В 20 лет получил право преподавать физику и математику. 16 апреля 1880 года под руководством Лео Кёнигсбергера Пик защитил докторскую диссертацию «О классе абелевых интегралов». В 1881 году он получил место ассистента у Эрнста Маха, который занял кафедру физики в Пражском университете. Чтобы получить право чтения лекций, Георгу необходимо было пройти хабилитацию. Для этого он написал работу «Об интеграции гиперэллиптических дифференциалов логарифмами». Это произошло в 1882 году, вскоре после разделения Пражского университета на чешский (Карлов университет) и немецкий (Университет Карла-Фердинанда). Пик остался в Немецком университете. В 1884 году Пик уехал в Лейпцигский университет к Феликсу Клейну. Там он познакомился с другим учеником Клейна, Давидом Гильбертом. Позже, в 1885 г., он вернулся в Прагу, где и прошла оставшаяся часть его научной карьеры. Преподавательская деятельность в Немецком университете в Праге в 1888 г. Пик получил место экстраординарного профессора математики, затем в 1892г. стал ординарным профессором. В 1910 г. Георг Пик был в комитете, созданном Немецким университетом Праги для рассмотрения вопроса о принятии Альберта Эйнштейна профессором в университет. Пик и физик Антон Лампа были главными инициаторами этого назначения, и благодаря их усилиям Эйнштейн, с которым Пик впоследствии сдружился, в 1911г. возглавил кафедру теоретической физики в Немецком университете в Праге. Круг математических интересов Пика был чрезвычайно широк. В частности, им написаны работы в области функционального анализа и дифференциальной геометрии, эллиптических и абелевых функций, теории дифференциальных уравнений и комплексного анализа, всего более 50 тем. С его именем связаны матрица Пика, интерполяция Пика - Неванлинны, лемма Шварца-Пика.
Среди всего многообразия достижений австрийского математика выделяется формула для вычисления площадей многоугольников с вершинами в узлах клетки открытая им в 1899 году. Она стала широко известна только в 1969 году,после того, как Гуго Штейнгауз включил ее в свою знаменитую книгу «Математический калейдоскоп».В Германии эта теорема включена в школьные учебники.
После выхода в 1927 году на пенсию Пик вернулся в свой родной город Вену. Однако после аншлюса (присоединение) 12 марта 1938 года Австрии с Германией ему снова пришлось перебраться в Прагу. В сентябре 1938 года фашистская Германия вторглась на территорию Чехословакии. Г.А.Пик был брошен в концентрационный лагерь в Терзинштадте, где и умер две недели спустя.

Применение формулы Пика.
Задачи из КИМов ОГЭ и ЕГЭ.

Данный вид задач входит в один из разделов части В единого государственного экзамена по математике.
Ознакомление с формулой Пика особенно актуально накануне сдачи ЕГЭ и ОГЭ. С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, — это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»! Формула Пика — это настоящее спасение для тех учеников, которые так и не смогли выучить все формулы для вычисления площадей фигур, для тех, кто так и не уяснил до конца, как выполнить разбиение фигуры или дополнительное построение, чтобы подобраться к вычислению её площади «через знакомых». С другой стороны, для тех, кто площадь многоугольника, изображённого на клетчатой бумаге, умеет находить с помощью вышеперечисленных приёмов, формула Пика послужит дополнительным инструментом, с помощью которого можно будет решить задачу ещё и этим способом (и тем самым проверить правильность своего предыдущего решения, сверив полученные ответы).

Исследование площадей многоугольников, изображенных на клетчатой бумаге.
Найдите площадь окрашенной фигуры, изображенной на чертеже. Размер каждой клетки равен 1см * 1см. Ответ дайте в квадратных сантиметрах.
Задача 1.
Дано:
Г=10, В=27.
Решение:S=27+10:2-1=31(кв. ед.)
Ответ: 31 кв.ед.

Задача 2.
Дано:
Г=3, В=0.
Решение: S=0+3:2-1=1 (кв. ед)
Ответ: 1 кв. ед.

Задача 3.
Дано:
Г=4, В=0.
Решение: S=0+4:2-1=1 (кв.ед.)
Ответ: 1 кв.ед.

Задача 4.
Дано:
Г=6, В=3.
Решение: S=3+6:2-1=5(кв.ед.)
Ответ: 5 кв.ед.

Задача 5.
Дано:
Г=6, В=16.
Решение:S=16+6:2-1=17(кв.ед.)
Ответ: 17 кв.ед.

Задача 6: Найти площадь «ракеты».
Дано:
Г=20, В=25.
Решение:S=25+20:2-1=34 (кв.ед.)
Ответ: 34 кв.ед.

Задача 7: Найти площадь кувшина.
Дано:
Г=6, В=14.
Решение:S=14+6:2-1=16 (кв.ед.)
Ответ: 16 кв.ед.

Задача 8: Найти площадь «плачущего сердца».
Дано:
Г=10, В=4.
Решение:S=4+10:2-1=8(кв.ед.)
Ответ: 8 кв.ед.

Задача 9.
Дано:
Г-9, В=11.
Решение:S= 11+9:2-1=14,5(кв.ед.)
Ответ: 14,5 кв.ед.

Задача 10.
Дано:
Г=26, В=32.
Решение:S=32+26:2-1=44 (кв.ед.)
Ответ: 44 кв.ед.

Задача 11.
Дано:
Г=16, В=27.
Решение: S=27+16:2-1=34(кв.ед.)
Ответ: 34 кв.ед.

Задача 12.
Дано:
Г=26, В=32.
Решение:S=32+26:2-1=44(кв.ед.)
Ответ: 44 кв.ед.

Задача 13.
Дано:
Г=22, В=30.
Решение:S=30+22:2-1=40 (кв.ед.)
Ответ: 40 кв.ед.

Задача 14.
Дано:
Г=28, В=52.
Решение:S=52+28:2-1=65 (кв.ед.)
Ответ: 65 кв.ед.

Задача 15.
Шахматный король обошел доску 8*8 клеток, побывав на каждом поле ровно один раз и последним ходом вернувшись на исходное поле. Ломаная, соединяющая последовательно центры полей, которые проходил король, не имеет самопересечений. Какую площадь может ограничивать эта ломаная? (Сторона клетки равна 1.)
Из формулы Пика сразу следует, что площадь, ограниченная ломаной, равна 64/2 - 1 = 31; здесь узлами решетки служат центры 64 полей и, по условию, все они лежат на границе многоугольника. Таким образом, хотя таких траекторий короля достаточно много, но все они ограничивают многоугольники равных площадей.
Ответ: 31

Задача 16.
Середины сторон квадрата соединены отрезками с вершинами. Найти площадь восьмиугольника и отношение площади квадрата к площади восьмиугольника, образованного проведенными отрезками.
Так как нужно найти отношение площадей, то размеры квадрата роли не играют. Поэтому рассмотрю квадрат, расположенный на целочисленной решетке, размером 12*12; стороны квадрата лежат в узлах клеточек. Тогда, нетрудно заметить, все вершины восьмиугольника являются узлами решетки; более того, отсюда легко заметить, что этот восьмиугольник правильным не является— он равносторонний, но не равноугольный. Из формулы Пика теперь легко следует, что площадь восьмиугольника равна
S=21 + 8/2 - 1 = 24 кв.ед. Площадь квадрата равна 122 =144 кв.ед. Поэтому искомое отношение площадей равно 6.
Ответ:24 кв.ед., 6.

Задача 17:Вычислить площадь многоугольника.
Дано:
В=33, Г=28.
Решение: S=33+28:2-1=46 (кв.ед.)
Ответ. 46 кв.ед.

Задача 18: Вычислить площадь многоугольника.
Дано:
В=117, Г= 68.
Решение:S=117+68:2-1=150 (кв.ед.)
Ответ:150 кв.ед.

Игры на клетчатой бумаге.
1. Окружение
Правила игры:
Поединок ведется на листке бумаги. Размеры и форма поля могут быть разными, минимальный размер поля - 12 х12 клеток.
Ходы делаются поочередно карандашом разного цвета. Сделать ход - значит поставить точку своего цвета в любой свободный узел поля.
Цель игры - окружить (взять в плен) своими точками как можно больше точек соперника.
Точка считается окруженной, если все соседние с ней по вертикали и горизонтали узлы заняты точками соперника. В ходе игры в окружение попадают как отдельные точки, так и целые группы. Окруженные точки обводятся линией, проходящей через все окружившие их точки соперника.
Может возникнуть ситуация, группа точек, пленившая какое-то количество точек противника, сама попадает в окружение. В этом случае «первичные» пленники считаются освобожденными.
Игра заканчивается, когда следующие ходы уже не могут привести к окружению никаких новых точек. Победителем становится тот, кто окружил больше точек.

Точки
Правила игры:
Отметьте на листке несколько точек (не меньше 8). Играют двое, поочередно соединяя любые две точки отрезком. Захватывать какую- либо третью точку нельзя. Каждая точка может быть концом только одного отрезка. Линии не должны пересекаться. Проигрывает тот, кто не сможет сделать очередного хода.

Эксперимент и исследование
Мы решили провести эксперимент для того, чтобы выяснить какой из рассмотренных способов является самым эффективным (безошибочным и малозатратным по времени).
Обучающимся8-11 классов мы напомнили и объяснили способы нахождения площадей фигур на клетчатой бумаге. Ученики решали задачи с помощью формул для нахождения площадей. Каждому нужно было решить 5 задачи и засечь время их выполнения.
Затем мы рассказывали им о формуле Пика, показали на примерах её применение и предложили решить те же задачи, но по формуле Пика (снова засекали время).
Результаты эксперимента представлены в таблице.
Общие результаты эксперимента:
Затраченное время - среднее значение (мин) Количество уч-ся, допустивших ошибки Безошибочных работ

T1 T2 О1 О2 Э1 Э2
8 класс
(20 учеников) 6,8 3,5 13 4 11 16
9 класс
(12 учеников) 6,6 3,7 13 6 5 7
10 - 11 класс
(7 человек) 4,7 2,4 2 0 5 0
Всего
(39 учеников) 6,3 3,4 28 10 21 23

Проведенный эксперимент показал, что:
никто из учеников не знал формулу Пика;
28 из 39 учащихся допустили ошибки при решении задач известными способами;
10 из 39 учащихся допустили ошибки при решении задач, используя формулу Пика;
количество ошибок, допущенных при решении задач по формуле Пика, сократилось в 2 раза, а у 10 - 11 - классников почти 100 %;
количество безошибочных работ увеличилось в 2 раза, а у 10-11 - классников - в 9 раз;
время, затраченное на решение по формуле Пика, сократилось в 2 раза.
Результаты эксперимента:
Количество участвующих в эксперименте Затраченное время Количество ошибок
ИФ ФП О1 О2
1/8 6 4 2 1
2/8 6 3 0 0
3/8 7 4 0 0
4/8 6 3 0 0
5/8 6 3 0 0
6/8 4 2 0 0
7/8 9 3 2 1
8/8 6 4 1 0
9/8 6 3 0 0
10/8 9 2 0 0
11/8 4 3 1 0
12/8 5 3 2 1
13/8 6 3 0 0
14/8 9 2 0 0
15/8 10 5 1 0
16/8 5 6 2 1
17/8 8 6 1 0
18/8 10 5 0 0
19/8 7 3 1 0
20/8 6 3 0 0
21/9 6 3 1 0
22/9 7 4 2 1
23/9 8 4 2 1
24/9 6 3 0 0
25/9 9 5 2 1
26/9 9 5 3 2
27/9 6 3 0 0
28/9 5 3 0 0
29/9 7 4 2 1
30/9 5 3 0 0
31/9 5 3 0 0
32/9 6 4 1 0
33/10 5 3 0 0
34/10 4 2 0 0
35/10 6 3 1 0
36/10 4 2 0 0
37/10 6 3 1 0
38/11 4 2 0 0
39/11 4 2 0 0
Всего
(39 учеников)

ИФ - решение задач известными способами,
ФП - решение задач по формуле Пика.

Заключение
В процессе исследования я изучил много справочной, научно-популярной литературы, побывал на сайтах: малый Мехмат МГУ, ФИПИ, прочитал некоторые книги в электронном виде. Рассмотрел различные задачи на построение и вычисления, заданные на клетчатой бумаге, подобрал нестандартные задания. Эти задачи отличаются от обычных задач, изложенных в действующих учебниках и задачниках по математике.
Любители головоломок увлекаются решением задач на клетчатой бумаге, прежде всего потому, что универсального метода решения таких задач не существует, и каждый, кто берётся за их решение, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению, поскольку здесь не требуется глубокого знания геометрии.
Вместе с тем, задачи на клетчатой плоскости не являются несерьёзными или бесполезными, они не так уж и далеки от серьёзных математических задач.
В результате работы я расширил свои знания о решении задач на клетчатой бумаге, определил для себя классификацию исследуемых задач, убедился в их многообразии.
Рассмотренные задания имеют различный уровень трудности - от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

При помощи формулы Пика можно находить площадь фигуры, построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).

В задачах, которые будут на ЕГЭ, есть целая группа заданий, в которых дан многоугольник, построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки - один квадратный сантиметр.

Просмотр содержимого презентации


Георг Пик

Георг Александр Пик,

австрийский математик

(10.08.1859 - 13.07.1942)


Формула была открыта в 1899 г.

Площадь искомой фигуры можно найти по формуле:

  • М – количество узлов на границе треугольника (на сторонах и вершинах):
  • N – количество узлов внутри треугольника;

* Под «узлами» имеется ввиду пересечение линий.


Найдём площадь треугольника:


Отметим узлы:

1 клетка = 1 см

  • M = 15 (обозначены красным)
  • N = 34 (обозначены синим)

Найдём площадь параллелограмма:


Отметим узлы:

  • M = 18 (обозначены красным)
  • N = 20 (обозначены синим)

Найдём площадь трапеции:


Отметим узлы:

  • M = 24 (обозначены красным)
  • N = 25 (обозначены синим)

Найдём площадь многоугольника:


Отметим узлы:

  • M = 14 (обозначены красным)
  • N = 43 (обозначены синим)



Отметим узлы:

  • M = 11 (обозначены красным)
  • N = 5 (обозначены синим)

Решите самостоятельно:

1. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах.




4. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах .



Опишем около неё прямоугольник:

  • Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:


Ответы:

задания

Вариант 1

Вариант 2

Вариант 3

Вариант 4


1

Гибадуллина Г.И. (Нурлат, МАОУ СОШ №1)

1. Бунимович Е.А., Дорофеев Г.В., Суворова С.Б. и др. Математика. Арифметика. Геометрия. 5 класс: учебн. для общеобразоват. организаций с прил. на электрон. носителе -3–е изд. – М.: Просвещение, 2014. – 223, с. : ил. – (Сферы).

2. Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др. Математика. Арифметика. Геометрия. 6 класс: учебн. для общеобразоват. организаций. 5-е изд. – М.: Просвещение, 2016. – 240 с.: ил. – (Сферы).

3. Васильев Н.Б. Вокруг формулы Пика // Квант. – 1974. – №2. – С. 39–43.

4. Рассолов В.В. Задачи по планиметрии. 5–е изд., испр. и доп. – М.: 2006. – 640 с.

5. Ященко И.В. ОГЭ. Математика: типовые экзаменационные варианты: О-39 36 вариантов – М.: Изд-во «Национальное образование», 2017. – 240 с. – (ОГЭ. ФИПИ – школе).

6. Решу ОГЭ: математика. Обучающая система Дмитрия Гущина. ОГЭ-2017: задания, ответы, решения [Электронный ресурс]. – Режим доступа: https://oge.sdamgia.ru/test?id=6846966 (дата обращения 02.04.2017).

Я ученик 6 класса. Изучать геометрию начал ещё с прошлого года, ведь занимаюсь я в школе по учебнику «Математика. Арифметика. Геометрия» под редакцией Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и другие.

Наибольшее мое внимание привлекли темы «Площади фигур», « Составление формул». Я заметил, что площади одних и тех же фигур можно находить различными способами. В быту мы часто сталкиваемся с задачами нахождения площади. Например, найти площадь пола, который придется покрасить. Любопытно ведь, чтобы купить необходимое количество обоев для ремонта, нужно знать размеры комнаты, т.е. площадь стен. Вычисление площади квадрата, прямоугольника и прямоугольного треугольника не вызывало у меня затруднений.

Заинтересовавшись этой темой, я начал искать дополнительный материал в Интернете. В результате поисков я натолкнулся на формулу Пика- это формула для вычисления площади многоугольника, нарисованного на клетчатой бумаге. Вычисление площади по этой формуле мне показалось доступным любому ученику. Именно поэтому я решил провести исследовательскую работу.

Актуальность темы . Данная тема является дополнением и углублением изучения курса геометрии.

Изучение данной темы поможет лучше подготовиться к олимпиадам и экзаменам.

Цель работы:

1. Ознакомиться с формулой Пика.

2. Овладеть приемами решений геометрических задач с использованием формулы Пика.

3. Систематизировать и обобщить теоретический и практический материалы.

Задачи исследования:

1. Проверить эффективность и целесообразность применения формулы при решении задач.

2. Научиться применять формулу Пика в задачах разной сложности.

3. Сравнить задачи, решенные с помощью формулы Пика и традиционным способом.

Основная часть

Историческая справка

Георг Александр Пик - австрийский математик , родился 10 августа года. Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Всемирную известность ему принесла формула для определения площади решетки полигонов. Свою формулу он опубликовал в статье в 1899 году. Она стала популярной, когда польский ученый Хьюго Штейнгауз включил ее в 1969 году в издание математических снимков.

Георг Пик получил образование в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско- Фердинандском университете в Праге. Там же он стал преподавателем. Он оставался в Праге до своей отставки в 1927 году, а затем вернулся в Вену.

Пик возглавлял комитет в немецком университете Праги, который назначил Эйнштейна профессором кафедры математической физики в 1911 году.

Он был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

Исследование и доказательство

Свою исследовательскую работу я начал с выяснения вопроса: площади каких фигур я смогу найти? Составить формулу для вычисления площади различных треугольников и четырехугольников я мог. А как же быть с пяти-, шести-, и вообще с многоугольниками?

В ходе исследования на различных сайтах я увидел решения задач на вычисление площади пяти-, шести-, и других многоугольников. Формула, позволяющая решать данные задачи, называлась формулой Пика. Она выглядит так: S=B+Г/2-1, где В - количество узлов, лежащих внутри многоугольника, Г - количество узлов, лежащих на границе многоугольника. Особенность данной формулы состоит в том, что её можно применять только для многоугольников, нарисованных на клетчатой бумаге.

Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны ½, а следовательно, площадь многоугольника равна половине их числа Т.

Чтобы найти это число, обозначим через n число сторон многоугольника, через В - число узлов внутри него, через Г - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна 180°. Т.

Теперь найдем сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 2.180°, т.е. общая сумма углов равна 360°. В; общая сумма углов при узлах на сторонах, но не в вершинах равна (Г - n)180°, а сумма углов при вершинах многоугольника будет равна (Г - 2)180°. Таким образом, Т=2.180°. В+(Г-n)180°+(n-2)180°. Выполнив раскрытие скобок и разделив на 360°, получаем формулу для площади S многоугольника, известную как формула Пика.

Практическая часть

Эту формулу решил проверить на заданиях из сборника ОГЭ-2017. Взял задачи на вычисление площади треугольника, четырехугольника и пятиугольника. Решил сравнить ответы, решая двумя способами: 1) дополнил фигуры до прямоугольника и из площади полученного прямоугольника вычел площадь прямоугольных треугольников; 2) применил формулу Пика.

S = 18-1,5-4,5 = 12 и S = 7+12/2-1= 12.

S = 24-9-3 = 12 и S = 7+12/2-1 = 12.

S = 77-7,5-12-4,5-4 =49 и S = 43+14/2-1 = 49.

Сравнив полученное, делаю вывод, что обе формулы дают один и тот же ответ. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. Легкость решения и экономия времени на вычислениях мне пригодятся в будущем при сдаче ОГЭ.

Это подтолкнуло меня на проверку возможности применения формулы Пика на более сложных фигурах.

S = 0 + 4/2 -1 = 1

S = 5+11/2-1 = 9,5

S = 4+16/2-1 = 1

Заключение

Формула Пика проста в понимании и удобна в применении. Во-первых, достаточно уметь считать, делить на 2, складывать и вычитать. Во-вторых, можно найти площадь и сложной фигуры, не затратив много времени. В-третьих, эта формула работает для любого многоугольника.

Недостаток в том, что Формула Пика применима только для фигур, которые нарисованы на клетчатой бумаге и вершины лежат на узлах клеток.

Я уверен, что при сдаче выпускных экзаменов, задачи на вычисление площади фигур не будут вызывать затруднения. Ведь я уже знаком с формулой Пика.

Библиографическая ссылка

Габбазов Н.Н. ФОРМУЛА ПИКА // Старт в науке. – 2017. – № 6-1. – С. 130-132;
URL: http://science-start.ru/ru/article/view?id=908 (дата обращения: 02.03.2019).

В Викисловаре есть статья «пика» Пика В военном деле: Пика холодное колющее оружие, разновидность длинного копья. Пикинёры вид пехоты в европейских армиях XVI начала XVIII веков. Пикельхельм (п … Википедия

Теорема Пика (комбинаторная геометрия) - В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

Треугольник - У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Трапеция - У этого термина существуют и другие значения, см. Трапеция (значения). Трапеция (от др. греч. τραπέζιον «столик»; … Википедия

Четырёхугольник - ЧЕТЫРЁХУГОЛЬНИКИ ┌─────────────┼────────────┐ невыпуклый выпуклый самопересекающийся … Википедия

Двуугольник - Правильный двуугольник на поверхности сферы Двуугольник в геометрии это … Википедия

Пятиугольник - Правильный пятиугольник (пентагон) Пятиугольник многоугольник с пятью углами. Также пятиугольником называют всякий предмет такой формы. Сумма внут … Википедия

Шестиугольник - Правильный шестиугольник Шестиугольник многоугольник с шестью углами. Также шестиугольником называют всякий предмет такой формы. Сумма внутренних углов выпуклого шестиугольника р … Википедия

Додекагон - Правильный додекагон Додекагон (греч … Википедия

Прямоугольник - Прямоугольник параллелограмм, у которого все углы прямые (равны 90 градусам). Примечание. В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые. Четвёртый угол (в силу … Википедия

Книги

  • Эффект плато. Как преодолеть застой и двигаться дальше , Салливан Б.. Эффект плато - эта пугающая формула «после каждого успеха приходит застой», понимание того, что ваши усилия больше не приносят результата, - мощный закон природы, который касается каждого из… Купить за 460 руб
  • Математический клуб «Кенгуру». Выпуск № 8. Математика на клетчатой бумаге , . Выпуск посвящен различным задачам и играм, связанным с листом клетчатой бумаги. В частности, в нем подробно рассматривается вычисление площади многоугольника, вершины которого расположены в…



© 2024
womanizers.ru - Журнал современной женщины