19.07.2019

Последовательность механизма восприятия звука. Восприятие высоты, силы звука и локализации источника звука. Шумовое загрязнения в городе Набережные Челны


Психоакустика - область науки, которая изучает слуховые ощущения человека при воздействии звука на уши.

Люди, обладающие абсолютным (аналитическим) музыкальным слухом, с высокой точностью определяют высоту, громкость и тембр звука, способны запоминать звучание инструментов и распознавать их через некоторое время. Они могут правильно проанализировать прослушанное, правильно выделить отдельные инструменты.

Люди, не обладающие абсолютным слухом, могут определить ритм, тембр, тональность, но правильно произвести анализ прослушанного материала для них затруднительно.

При прослушивании высококачественной аудиоаппаратуры, как правило, мнения экспертов расходятся. Одни предпочитают высокую прозрачность и верность передачи каждого обертона, их раздражает отсутствие детализованности звучания. Другие предпочитают звучание размытого, нечеткого характера, быстро устают от изобилия подробностей в музыкальном образе. Кто-то заостряет внимание на гармонии в звучании, кто-то на спектральном балансе, а кто-то - на динамическом диапазоне. Оказывается, все зависит от типохарактера индивида Типохарактеры людей подразделяются на следующие дихотомии (парные классы): сенсорную и интуитивную, думающую и чувствующую, экстравертную и интровертную, решающую и воспринимающую .

Люди с сенсорной доминантой обладают четкой дикцией, великолепно воспринимают все нюансы речевого или музыкального образа. Для них чрезвычайно важна прозрачность звучания, когда четко выделяются все звучащие инструменты

Слушатели с интуитивной доминантой предпочитают размытый музыкальный образ, придают исключительно важное значение сбалансированности звучания всех музыкальных инструментов.

Слушатели с думающей доминантой предпочитают музыкальные произведения с высоким динамическим диапазоном, с четко обозначенной мажорной и минорной доминантой, с выраженным смыслом и структурой произведения

Люди с чувствующей доминантой придают большое значение гармоничности в музыкальных произведениях, предпочитают произведения с небольшими отклонениями мажорности и минорности от нейтрального значения, т.е. «музыку для души».



Слушатель с экстравертной доминантой успешно выделяет сигнал из шума, предпочитает слушать музыку с высоким уровнем громкости, мажорность или минорность музыкального произведения определяет по частотному положению музыкального образа в данный момент.

Люди с интровертной доминантой значительное внимание уделяют внутренней структуре музыкального образа, мажорность-минорность оценивают, в том числе, и по смещению частоты одной из гармоник в возникающих резонансах, посторонние шумы затрудняют восприятие аудиоинформации.

Люди с решающей доминантой предпочитают в музыке закономерность, наличие внутренней периодичности.

Слушатели с воспринимающей доминантой предпочитают в музыке импровизацию.

Каждый по себе знает, что одна и та же музыка на одной и той же аппаратуре и в одном и том же помещении не всегда воспринимается одинаково. Вероятно, в зависимости от психоэмоционального состояния наши чувства то притупляются, то обостряются.

С другой стороны, излишняя детализованность и натуральность звучания может раздражать усталого и обремененного заботами слушателя с сенсорной доминантой, что в таком состоянии он предпочтет музыку размытую и мягкую, грубо говоря, предпочтет слушать живые инструменты в шапке-ушанке.

В какой-то степени на качество звука оказывает влияние «качество» напряжения сети, которое в свою очередь зависит как от дня недели, так и от времени суток (в часы пиковой нагрузки напряжение сети наиболее «загрязнено»). От времени суток зависит и уровень шума в помещении, а значит и реальный динамический диапазон.

О влиянии окружающего шума хорошо запомнился случай 20-летней давности. Поздно вечером после деревенской свадьбы молодежь осталась помочь убрать со столов и перемыть посуду. Музыка была организована во дворе: электробаян с двухканальным усилителем и двумя колонками, четырехканальный усилитель мощности по схеме Шушурина, на вход которого был подключен электробаян, а на выходы - две 3-полосные и две 2-полосные акустические системы. Магнитофон с записями, выполненными на 19 скорости со встречно-параллельным подмагничиванием. Около 2-х часов ночи, когда все освободились, молодежь собралась во дворе и попросила включить что-нибудь для души. Каково же было удивление музыкантов и присутствующих меломанов, когда зазвучало попурри на темы Битлс в исполнении группы STARS on 45. Для слуха, адаптированного к восприятию музыки в атмосфере повышенной зашумленности, звучание в ночной тишине стало удивительно чистым и нюансированным.

Восприятие по частоте

Человеческое ухо воспринимает колебательный процесс как звук только в том случае, если частота его колебаний находится в пределах от 16...20 Гц до 16...20 кГц. При частоте ниже 20 Гц колебания называют инфразвуковыми, выше 20 кГц - ультразвуковыми. Звуки с частотой ниже 40 Гц в музыке встречаются редко, а в разговорной речи и вовсе отсутствуют. Восприятие высоких звуковых частот сильно зависит как от индивидуальных особенностей органов слуха, так и от возраста слушателя. Так, например, в возрасте до 18 лет звуки частотой 14 кГц слышат около 100%, в то время как в возрасте 50...60 лет - только 20% слушателей. Звуки частотой 18 кГц к 18 годам слышит около 60%, а к 40...50 годам - всего 10% слушателей. Но это вовсе не означает, что для людей пожилого возраста снижаются требования к качеству тракта звуковоспроизведения. Экспериментально установлено, что люди, едва воспринимающие сигналы частотой 12 кГц, очень легко распознают недостаток верхних частот в фонограмме.

Разрешающая способность слуха к изменению частоты около 0,3%. Например два тона 1000 и 1003 Гц, следующих один за другим, можно различить без приборов. А по биениям частот двух тонов человек может обнаружить разность частот до десятых долей герца. В то же время трудно различить на слух отклонение скорости воспроизведения музыкальной фонограммы в пределах ±2%.

Субъективный масштаб восприятия звука по частоте близок к логарифмическому закону. Исходя из этого, все частотные характеристики устройств передачи звука строят в логарифмическом масштабе. Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты, музыкальности и тренированности его слуха, а также от интенсивности звука. При больших уровнях громкости звуки большей интенсивности кажутся ниже, чем слабые.

При длительном воздействии интенсивного звука чувствительность слуха постепенно снижается и тем больше, чем выше громкость звука, что связано с реакцией слуха на перегрузку, т.е. с естественной его адаптацией. По истечении определенного времени чувствительность восстанавливается. Систематическое и длительное прослушивание музыки с высоким уровнем громкости вызывает необратимые изменения в органах слуха, особенно страдает молодежь, пользующаяся наушниками (головными телефонами).

Важной характеристикой звука является тембр. Способность слуха различать его оттенки позволяет различать многообразие музыкальных инструментов и голосов. Благодаря тембральной окраске их звучание становится многокрасочным и легко узнаваемым. Условием правильной передачи тембра является неискаженная передача спектра сигнала - совокупности синусоидальных составляющих сложного сигнала (обертонов). Обертоны кратны частоте основного тона и меньше его по амплитуде. От состава обертонов и их интенсивности зависит тембр звука.

Тембр звука живых инструментов в значительной степени зависит от интенсивности звукоизвлечения. Например, одна и та же нота, сыгранная на фортепьяно легким нажатием пальца, и резким, имеет разные атаки и спектры сигнала. Даже не тренированный человек легко улавливает эмоциональное различие двух таких звуков по их атаке, даже если они переданы слушателю с помощью микрофона и уравновешены по громкости. Атака звука - это начальная стадия, специфический переходной процесс, в течение которого устанавливаются стабильные характеристики: громкость, тембр, высота звука. Длительность атаки звука разных инструментов колеблется в пределах 0...60 мс. Например, у ударных инструментов она находится в пределах 0...20 мс, у фагота - 20...60 мс. Характеристики атаки инструмента сильно зависят от манеры и техники игры музыканта. Именно эти особенности инструментов позволяют передать эмоциональное содержание музыкального произведения.

Тембр звука источника сигнала, находящегося на расстоянии от слушателя менее 3 м, воспринимается более «тяжелым». Удаление источника сигнала от 3 до 10 м сопровождается пропорциональным уменьшением громкости, при этом тембр становится более ярким. С дальнейшим удалением источника сигнала потери энергии в воздухе растут пропорционально квадрату частоты и имеют сложную зависимость от относительной влажности воздуха. Потери энергии ВЧ-составляющих максимальны при относительной влажности в пределах от 8 до 30...40% и минимальны при 80% (рис. 1.1) . Увеличение потерь обертонов приводит к снижению тембральной яркости.

Восприятие по амплитуде

Кривые равной громкости от порога слышимости до порога болевого ощущения для бинаурального и моноурального слушания приведены на рис. 1.2.а,б, соответственно . Восприятие по амплитуде зависит от частоты и имеет значительный разброс, связанный с возрастными изменениями.

Чувствительность слуха к интенсивности звука носит дискретный характер. Порог ощущения изменения интенсивности звука зависит как от частоты, так и от громкости звука (на высоких и средних уровнях составляет 0,2...0,6 дБ, на низких уровнях доходит до нескольких децибел) и в среднем меньше 1 дБ.

Эффект Хааса (Haas)

Слуховому аппарату, как и любой другой колебательной системе, свойственна инерционность. Благодаря этому свойству короткие звуки длительностью до 20 мс воспринимаются более тихими, чем звуки длительностью более 150 мс. Одно из проявлений инерционности -

неспособность человека выявлять искажения в импульсах длительностью менее 20 мс. В случае прихода к ушам 2-х одинаковых сигналов, с временным интервалом между ними 5...40 мс, слух воспринимает их как один сигнал, при интервале более 40...50 мс - раздельно.

Эффект маскировки

Ночью, в условиях тишины, слышны писк комара, тиканье часов и другие тихие звуки, а в условиях шума трудно разобрать громкую речь собеседника. В реальных условиях акустический сигнал не существует в абсолютной тишине. Посторонние шумы, неизбежно присутствующие в месте прослушивания, маскируют в определенной мере основной сигнал и затрудняют его восприятие. Повышение порога слышимости одного тона (или сигнала) при одновременном воздействии другого тона (шума или сигнала) называют маскировкой.

Экспериментально установлено, что тон любой частоты маскируется более низкими тонами значительно эффективнее, чем более высокими, иными словами, низкочастотные тоны сильнее маскируют высокочастотные, чем наоборот. Например, при одновременном воспроизведении звуков 440 и 1200 Гц с одинаковой интенсивностью, мы будем слышать только тон частотой 440 Гц и только выключив его, услышим тон частотой 1200 Гц. Степень маскировки зависит от соотношения частот и носит сложный характер, связанный с кривыми равной громкости (рис. 1.3.α и 1.3.6) .

Чем больше соотношение частот, тем меньше эффект маскировки. Это в значительной степени объясняет феномен «транзисторного» звучания. Спектр нелинейных искажений транзисторных усилителей простирается вплоть до 11 гармоники, в то время как спектр ламповых усилителей ограничивается 3...5 гармоникой. Кривые маскировки узкополосным шумом для тонов разных частот и уровней их интенсивности имеют разный характер. Четкое восприятие звука возможно в том случае, если его интенсивность превышает определенный порог слышимости. На частотах 500 Гц и ниже превышение интенсивности сигнала должно быть около 20 дБ, на частоте 5 кГц - около 30 дБ, а

на частоте 10 кГц - 35 дБ. Эту особенность слухового восприятия учитывают при записи на носители звука. Так, если отношение сигнал/шум аналоговой грампластинки около 60...65 дБ, то динамический диапазон записанной программы может быть не более 45...48 дБ.

Эффект маскировки оказывает влияние на субъективно воспринимаемую громкость звука. Если составляющие сложного звука расположены по частоте близко друг к другу и наблюдается их взаимная маскировка, то громкость такого сложного звука будет меньше громкостей его составляющих.

Если несколько тонов расположены по частоте настолько далеко, что их взаимной маскировкой можно пренебречь, то их суммарная, громкость будет равна сумме громкостей каждой из составляющих.

Достижение «прозрачности» звучания всех инструментов оркестра или эстрадного ансамбля является сложной задачей, которая решается звукорежиссером - умышленным выделением наиболее важных в данном месте произведения инструментов и другими специальными приемами.

Бинауральный эффект

Способность человека определять направление источника звука (благодаря наличию двух ушей) называется бинауральным эффектом . К уху, расположенному ближе к источнику звука, звук приходит раньше, чем ко второму уху, а значит, различается по фазе и амплитуде. При слушании реального источника сигнала бинауральные сигналы (т.е. сигналы, приходящие к правому и левому уху) статистически связаны между собой (коррелированны). Точность локализации источника звука зависит как от частоты, так и от его местонахождения (спереди или сзади слушателя). Дополнительную информацию о расположении источника звука (спереди, сзади, сверху) орган слуха получает, анализируя особенности спектра бинауральных сигналов.

До 150...300 Гц человеческий слух обладает очень малой направленностью. На частотах 300...2000 Гц, для которых длина полуволны сигнала соизмерима с «межушным» расстоянием, равным 20...25 см, существенны фазовые различия. Начиная с частоты 2 кГц направленность слуха резко убывает. На высших частотах большее значение приобретает разность амплитуд сигналов. Когда разница в амплитудах превышает пороговое значение, равное 1 дБ, то кажется, что источник звука находится на той стороне, где амплитуда больше.

При асимметричном расположении слушателя относительно громкоговорителей возникают дополнительные интенсивностные и временные разносы, которые приводят к пространственным искажениям. Причем, чем дальше КИЗ (кажущийся источник звука) от центра базы (ΔL > 7 дБ или Δτ > 0,8 мс), тем меньше они подвержены искажениям. При ΔL > 20 дБ, Δτ > 3...5 мс КИЗ превращаются в действительные (громкоговорители) и не подвержены пространственным искажениям.

Экспериментально установлено, что пространственные искажения отсутствуют (незаметны), если полоса частот каждого канала сверху ограничена частотой не менее 10 кГц, а высокочастотная (выше 10 кГц) и низкочастотная (ниже 300 Гц) часть спектра этих сигналов воспроизводится монофонически.

Погрешность оценки азимута источника звука в горизонтальной плоскости спереди составляет 3...4°, сзади и в вертикальной плоскости - примерно 10... 15°, что объясняется экранирующим действием ушных раковин.

Слуховой анализатор человека представляет собой специализированную систему для восприятия звуковых колебаний, формирования слуховых ощущений и опознавания звуковых образов. Вспомогательный аппарат периферической части анализатора — это ухо (рисунок 15).

Различают наружное ухо, в состав которого входят ушная раковина, наружный слуховой проход и барабанная перепонка; среднее ухо, состоящее из системы соединенных между собой слуховых косточек — молоточка, наковальни и стремени, и внутреннее ухо, которое включает улитку, где расположены рецепторы, воспринимающие звуковые колебания, а также преддверие и полукружные каналы. Полукружные каналы представляют собой периферическую рецепторную часть вестибулярного анализатора, о котором пойдет отдельный разговор.

Наружное ухо устроено таким образом, что обеспечивает подведение звуковой энергии к барабанной перепонке. При помощи ушных раковин происходит относительно небольшое концентрирование этой энергии, а наружный слуховой проход обеспечивает поддержание постоянной температуры и влажности как факторов, обусловливающих стабильность работы звукопередающего аппарата.

Барабанная перепонка представляет собой тонкую перегородку толщиной около 0,1 миллиметра, состоящую из волокон, идущих в различных направлениях. Функция барабанной перепонки хорошо отражена в ее названии — она начинает колебаться, когда на нее падают звуковые колебания воздуха со стороны наружного слухового прохода. При этом ее строение позволяет ей передавать практически без искажения все частоты звукового диапазона. Система слуховых косточек обеспечивает передачу колебаний от барабанной перепонки к улитке.

Рецепторы, которые обеспечивают восприятие звуковых колебаний, расположены во внутреннем ухе — в улитке (рисунок 16). Это название связано со спиралеобразной формой данного образования, состоящего из 2,5 витков.

В среднем канале улитки на основной мембране расположен кортиев орган (по имени итальянского анатома Корти, 1822-1888 годы). В этом органе и находится рецепторный аппарат слухового анализатора (рисунок 17).

Как же происходит формирование ощущений звука? Вопрос, который и в настоящее время привлекает пристальное внимание исследователей. Впервые (1863 год) весьма убедительное толкование процессов во внутреннем ухе представил немецкий физиолог Герман Людвиг Фердинанд Гельмгольц, разработавший так называемую резонансную теорию. Он обратил внимание, что основную мембрану улитки образуют волокна, идущие в поперечном направлении. Длина таких волокон увеличивается к вершине улитки. Отсюда понятна аналогия работы этого органа с арфой, у которой различная тональность достигается разной длиной струн. По представлению Гельмгольца, при воздействии звуковых колебаний вступает в резонанс какое-то определенное волокно, ответственное за восприятие данной частоты. Очень подкупающая своей простотой и завершенностью теория, но которую, увы, пришлось оставить, поскольку оказалось, что струн — волокон — в основной мембране слишком мало, чтобы воспроизводить все слышимые человеком частоты, натянуты эти струны слишком слабо, да и кроме того, их изолированные колебания невозможны. Эти трудности для резонансной теории оказались непреодолимы, но они послужили импульсом для последующих исследований.

По современным представлениям, передача и воспроизведение звуковых колебаний обусловлены частотно-резонансными свойствами всех сред улитки. При помощи весьма остроумных экспериментов было обнаружено, что при низких частотах колебаний (100-150 герц, может быть несколько выше, но не более 1000 герц) волновой процесс охватывает всю основную мембрану, возбуждаются все рецепторы кортиева органа, расположенного на этой мембране. При возрастании частоты звуковых волн в колебательный процесс вовлекается только часть основной мембраны, и тем меньше, чем выше звук. При этом максимум резонанса сдвигается по направлению к основанию улитки.

Однако мы пока еще не рассмотрели вопрос, каким же образом происходит трансформация энергии механических колебаний в процесс нервного возбуждения. Рецепторный аппарат слухового анализатора представлен своеобразными волосковыми клетками, которые являются типичными механорецепторами, то есть для которых адекватным раздражителем служит механическая энергия, в данном случае колебательные движения. Специфической особенностью волосковых клеток является наличие на их вершине волосков, которые находятся в непосредственном соприкосновении с покровной мембраной. В кортиевом органе различают один ряд (3,5 тысячи) внутренних и 3 ряда (12 тысяч) наружных волосковых клеток, которые различаются по уровню чувствительности. Для возбуждения внутренних клеток требуется больше энергии, и это является одним из механизмов органа слуха воспринимать звуковые раздражители в широком диапазоне интенсивностей.

При возникновении колебательного процесса в улитке в результате движений основной мембраны, а вместе с ней и кортиева органа происходит деформация волосков, упирающихся в покровную мембрану. Эта деформация и служит пусковым моментом в цепи явлений, приводящих к возбуждению рецепторных клеток. В специальном эксперименте было обнаружено, что если во время подачи звукового сигнала от поверхности волосковых клеток отводить биотоки и затем, усилив их, подвести к громкоговорителю, то мы обнаружим достаточно точное воспроизведение звукового сигнала. Это воспроизведение распространяется на все частоты, в том числе и на человеческий голос. Не правда ли, достаточно близкая аналогия с микрофоном? Вот отсюда и название — микрофонный потенциал. Доказано, что этот биоэлектрический феномен и представляет собой рецепторный потенциал. Отсюда следует, что волосковая рецепторная клетка достаточно точно (до определенного предела по интенсивности) через параметры рецепторного потенциала отражает параметры звукового воздействия — частоту, амплитуду и форму.

При электрофизиологическом исследовании волокон слухового нерва, которые подходят непосредственно к структурам кортиева органа, регистрируются нервные импульсы. Примечательно то, что частота такой импульсации зависит от частоты воздействующих звуковых колебаний. При этом до 1000 герц отмечается практически их совпадение. Хотя более высокие частоты в нерве не регистрируются, но сохраняется определенная количественная зависимость между частотами звукового раздражителя и афферентной импульсации.

Итак, мы ознакомились со свойствами человеческого уха и механизмами функционирования рецепторов слухового анализатора при воздействии звуковых колебаний воздуха. Но возможна передача и не только через воздух, а посредством так называемой костной проводимости. В последнем случае колебания (например, камертона) передаются костями черепа и затем, минуя среднее ухо, попадают непосредственно в улитку. Хотя в данном случае способ подведения акустической энергии иной, но механизм взаимодействия ее с рецепторными клетками остается тот же самый. Правда, при этом несколько различны и количественные отношения. Но в том и в другом случае возбуждение, первично возникшее в рецепторе и несущее определенную информацию, передается по нервным структурам до высших слуховых центров.

Каким же образом кодируется информация о таких параметрах звуковых колебаний, как частота и амплитуда? Сначала о частоте. Вы, очевидно, обратили внимание на своеобразный биоэлектрический феномен — микрофонный потенциал улитки. Он ведь по существу свидетельствует о том, что в значительном диапазоне колебания рецепторного потенциала (а они отражают работу рецептора и по восприятию, и последующей передаче) практически точно соответствуют по частоте звуковым колебаниям. Однако, как уже тоже отмечалось, в волокнах слухового нерва, то есть в тех волокнах, которые воспринимают информацию от рецепторов, частота нервных импульсов не превышает 1000 колебаний в секунду. А это значительно меньше, чем частоты воспринимаемых звуков в реальных условиях. Как же эта задача решается в слуховой системе? Ранее мы с вами, когда рассматривали работу кортиева органа, отмечали, что при низких частотах звукового воздействия колеблется вся основная мембрана. Следовательно, возбуждаются все рецепторы, и частота колебаний без изменения передается волокнам слухового нерва. При больших же частотах в колебательный процесс вовлекается только часть основной мембраны и, следовательно, только часть рецепторов. Они передают возбуждение соответствующей части нервных волокон, но уже с трансформацией ритма. В этом случае определенной частоте соответствует определенная часть волокон. Такой принцип обозначают как пространственный способ кодирования. Таким образом, информация о частоте обеспечивается частотно-пространственным кодированием.

Однако хорошо известно, что подавляющее большинство реальных звуков, воспринимаемых нами, в том числе и речевые сигналы, представляют собой не правильные синусоидальные колебания, а процессы, имеющие гораздо более сложную форму. Как же в этом случае обеспечивается передача информации? Еще в начале 19-го века выдающийся французский математик Жан Батист Фурье разработал оригинальный математический метод, позволяющий любую периодическую функцию представить в виде суммы ряда синусоидальных составляющих (ряда Фурье). Строгими математическими методами доказывается, что эти составляющие имеют периоды, равные Т, Т/2, Т/3 и так далее, или, иначе говоря, имеют частоты, кратные основной частоте. И немецкий физик Георг Симон Ом (которого все очень хорошо знают по его закону в электротехнике) в 1847 году выдвинул идею, что в кортиевом органе происходит именно такое разложение. Так появился еще один закон Ома, который отражает очень важный механизм звуковосприятия. Благодаря своим резонансным свойствам основная мембрана разлагает сложный звук на его составляющие, каждая из которых воспринимается соответствующим нервно-рецепторным аппаратом. Таким образом, пространственный рисунок возбуждения несет информацию о частотном спектре сложного звукового колебания.

Для передачи информации об интенсивности звука, то есть амплитуде колебаний, в слуховом анализаторе имеется механизм, также отличный от способа работы других афферентных систем. Чаще всего информация об интенсивности передается частотой нервной импульсации. Однако в слуховой системе, как это следует из только что рассмотренных процессов, такой способ невозможен. Оказывается, что и в данном случае используется принцип пространственного кодирования. Как уже отмечалось, внутренние волосковые клетки имеют чувствительность ниже, чем наружные. Таким образом, различной интенсивности звука соответствует разное сочетание возбужденных рецепторов двух этих видов, то есть специфическая форма пространственного рисунка возбуждения.

В слуховом анализаторе вопрос о специфических детекторах (как это хорошо выражено в зрительной системе) остается все еще открытым, тем не менее и здесь имеются механизмы, которые позволяют выделять все более и более сложные признаки, что в конечном итоге завершается формированием такого рисунка возбуждения, который соответствует определенному субъективному образу, опознаваемому по соответствующему «эталону».

Структурно-функциональная характеристика слухового анализатора

Общие понятия физиологии слухового анализатора

СЛУХОВОЙ АНАЛИЗАТОР

С помощью слухового анализатора человек ориентируется в звуковых сигналах окружающей среды, формирует соответствующие поведенческие реакции, например оборонительные или пищедобывательные. Способность восприятия человеком разговорной и вокальной речи, музыкальных произведений делает слуховой анализатор необходимым компонентом средств общения, познания, приспособления.

Адекватным раздражителем для слухового анализатора являются звуки , т. е. колебательные движения частиц упругих тел, распространяющихся в виде волн в самых различных средах, включая воздушную среду, и воспринимающиеся ухом .

Звуковые волновые колебания (звуковые волны) характеризуются частотой и амплитудой .

Частота звуковых волн определяет высоту звука. Человек различает звуковые волны с частотой от 20 до 20 000 Гц. Звуки, частота которых ниже 20 Гц – инфразвуки и выше 20 000 Гц (20 кГц) – ультразвуки, человеком не ощущаются. Звуковые волны, имеющие синусоидальные, или гармонические, колебания, называют тоном.

Звук, состоящий из не связанных между собой частот, называют шумом . При большой частоте звуковых волн – тон высокий, при малой – низкий.

Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила, зависящая от амплитуды звуковых волн. Сила звука воспринимаются человеком как громкость .

Ощущение громкости нарастает при усилении звука и зависит также от частоты звуковых колебаний, т.е. громкость звучания определяется взаимодействием интенсивности (силы) и высоты (частоты) звука. Единицей измерения громкости звука является бел , в практике обычно используется децибел (дБ), т.е. 0,1 бела. Человек различает звуки также по тембру, или «окраске». Тембр звукового сигнала зависит от спектра, т.е. от состава дополнительных частот – обертонов , которые сопровождают основную частоту – тон . По тембру можно различить звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Чувствительность слухового анализатора определяется минимальной силой звука, достаточной для возникновения слухового ощущения. В области звуковых колебаний от 1000 до 3000 в секунду, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот получила название речевой зоны .

Рецепторный (периферический) отдел слухового анализатора, превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа (орган Корти), находящимися в улитке. Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20 000 наружных волосковых клеток, которые расположены на основной мембране внутри среднего канала внутреннего уха.



Внутреннее ухо (звуковоспринимающий аппарат), а также среднее ухо (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха (рис. 2.6).

Наружное ухо за счет ушной раковины обеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.

Рис. 2.6. Орган слуха

Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. Площадь барабанной перепонки (70 мм 2) значительно больше площади овального окна (3,2 мм2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна примерно в 25 раз. Так как рычажный механизм косточек уменьшает амплитуду звуковых волн примерно в 2 раза, то, следовательно, происходит такое же усиление звуковых волн на овальном окне. Таким образом, происходит общее усиление звука средним ухом примерно в 60 –70 раз. Если же учитывать усиливающий эффект наружного уха, то эта величина достигает 180 – 200 раз. Среднее ухо имеет специальный защитный механизм, представленный двумя мышцами: мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей стремечко. Степень сокращения этих мышц зависит от силы звуковых колебаний. При сильных звуковых колебаниях мышцы ограничивают амплитуду колебаний барабанной перепонки и движение стремечка, предохраняя тем самым рецепторный аппарат во внутреннем ухе от чрезмерного возбуждения и разрушения. При мгновенных сильных раздражениях (удар в колокол) этот защитный механизм не успевает срабатывать. Сокращение обеих мышц барабанной полости осуществляется по механизму безусловного рефлекса, который замыкается на уровне стволовых отделов мозга. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, вентилируя полость среднего уха и уравнивая давление в нем с атмосферным. Если внешнее давление быстро меняется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений, снижению восприятия звуков.

Внутреннее ухо представлено улиткой – спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен основной мембраной и мембраной Рейснера на три узких части (лестницы). Верхний канал (вестибулярная лестница) начинается от овального окна и соединяется с нижним каналом (барабанной лестницей) через геликотрему (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилимфой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним каналами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембране расположен собственно звуковоспринимающий аппарат – орган Корти (кортиев орган) с рецепторными клетками, представляющий периферический отдел слухового анализатора (рис. 2.7).

Основная мембрана вблизи овального окна по ширине составляет 0,04 мм, затем по направлению к вершине она постепенно расширяется, достигая у геликотремы 0,5 мм. Над кортиевым органом лежит текториальная (покровная) мембрана соединительнотканного происхождения, один край которой закреплен, второй - свободен. Волоски наружных и внутренних волосковых клеток соприкасаются с текториальной мембраной. При этом изменяется проводимость ионных каналов рецепторных (волосковых) клеток, формируются микрофонный и суммационный рецепторные потенциалы.

Рис. 2.7. Кортиев орган

Образуется и выделяется медиатор ацетилхолин в синаптическую щель рецепторно-афферентного синапса. Все это приводит к возбуждению волокна слухового нерва, к возникновению в нем потенциала действия. Так происходит трансформация энергии звуковых волн в нервный импульс. Каждое волокно слухового нерва имеет кривую частотной настройки, которая называется также частотно-пороговой кривой. Этот показатель характеризует площадь рецептивного поля волокна, которая может быть узкой или широкой. Узкой она бывает при тихих звуках, а при увеличении их интенсивности расширяется.

Проводниковый отдел слухового анализатора представлен периферическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового (или кохлеарного) нерва, образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый нейрон). В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.

Центральный, или корковый, отдел слухового анализатора находится в верхней части височной доли большого мозга (верхняя височная извилина, поля 41 и 42 по Бродману). Важное значение для функции слухового анализатора имеют поперечные височные извилины (извилины Гешля).

Слуховая сенсорная система дополняется механизмами обратной связи, обеспечивающими регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей. Такие пути начинаются от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах метаталамуса, задних (нижних) буграх четверохолмия, в ядрах кохлеарного комплекса. Входя в состав слухового нерва, центробежные волокна достигают волосковых клеток кортиева органа и настраивают их на восприятие определенных звуковых сигналов.

Восприятие высоты, силы звука и локализации источника звука начинается с попадания звуковых волн в наружное ухо, где они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через геликотрему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха (рис. 2.8).

Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что приводит в колебательные движения основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. При действии звука волокна мембраны приходят в колебательные движения вместе с рецепторными клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с текториальной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.

Электрические явления в улитке. В улитке можно зарегистрировать пять различных электрических феноменов.

1. Мембранный потенциал слуховой рецепторной клетки характеризует состояние покоя.

2. Потенциал эндолимфы, или эндокохлеарный потенциал, обусловлен различным уровнем окислительно-восстановительных процессов в каналах улитки, в результате чего возникает разность потенциалов (80 мВ) между перилимфой среднего канала улитки (потенциал которой имеет положительный заряд) и содержимым верхнего и нижнего каналов. Этот эндокохлеарный потенциал оказывает влияние на мембранный потенциал слуховых рецепторных клеток, создавая у них критический уровень поляризации, при котором незначительное механическое воздействие во время контакта волосковых рецепторных клеток с текториальной мембраной приводит к возникновению в них возбуждения.

Рис. 2.8. Каналы улитки:

а – среднее и внутреннее ухо в разрезе (по П. Линдсею и Д. Норману, 1974); б – распространение звуковых колебаний в улитке

3. Микрофонный эффект улитки был получен в эксперименте на кошках. Электроды, введенные в улитку, соединялись с усилителем и громкоговорителем. Если рядом с ухом кошки произносили различные слова, то их можно услышать, находясь у громкоговорителя в другом помещении. Этот потенциал генерируется на мембране волосковой клетки в результате деформации волосков при соприкосновении с текториальной мембраной. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда потенциалов в определенных границах пропорциональна интенсивности звуков речи. Звуковые колебания, действующие на внутреннее ухо, приводят к тому, что возникающий микрофонный эффект накладывается на эндокохлеарный потенциал и вызывает его модуляцию.

4. Суммационный потенциал отличается от микрофонного потенциала тем, что отражает не форму звуковой волны, а ее огибающую. Он представляет собой совокупность микрофонных потенциалов, возникающих при действии сильных звуков с частотой выше 4000 – 5000 Гц. Микрофонный и суммационный потенциалы связывают с деятельностью наружных волосковых клеток и рассматривают как рецепторные потенциалы.

5. Потенциал действия слухового нерва регистрируется в его волокнах, частота импульсов соответствует частоте звуковых волн, если она не превышает 1000 Гц. При действии более высоких тонов частота импульсов в нервных волокнах не возрастает, так как 1000 имп/с – это почти максимально возможная частота генерации импульсов в волокнах слухового нерва. Потенциал действия в нервных окончаниях регистрируется через 0,5 –1,0 мс после возникновения микрофонного эффекта, что свидетельствует о синаптической передаче возбуждения с волосковой клетки на волокно слухового нерва.

Восприятие звуков различной высоты (частоты), согласно резонансной теории Гельмгольца, обусловлено тем, что каждое волокно основной мембраны настроено на звук определенной частоты. Так, звуки низкой частоты воспринимаются длинными волнами основной мембраны, расположенными ближе к верхушке улитки, звуки высокой частоты воспринимаются короткими волокнами основной мембраны, расположенными ближе к основанию улитки. При действии сложного звука возникают колебания различных волокон мембраны.

В современной интерпретации резонансный механизм лежит в основе теории места, в соответствии с которой в состояние колебания вступает вся мембрана. Однако максимальное отклонение основной мембраны улитки происходит только в определенном месте. При увеличении частоты звуковых колебаний максимальное отклонение основной мембраны смещается к основанию улитки, где располагаются более короткие волокна основной мембраны, – у коротких волокон возможна более высокая частота колебаний. Возбуждение волосковых клеток именно этого участка мембраны при посредстве медиатора передается на волокна слухового нерва в виде определенного числа импульсов, частота следования которых ниже частоты звуковых волн (лабильность нервных волокон не превышает 800 – 1000 Гц). Частота воспринимаемых звуковых волн достигает 20 000 Гц. Таким способом осуществляется пространственный тип кодирования высоты и частоты звуковых сигналов.

При действии тонов примерно до 800 Гц кроме пространственного кодирования происходит еще и временное (частотное) кодирование, при котором информация передается также по определенным волокнам слухового нерва, но в виде импульсов (залпов), частота следования которых повторяет частоту звуковых колебаний. Отдельные нейроны на разных уровнях слуховой сенсорной системы настроены на определенную частоту звука, т.е. каждый нейрон имеет свой специфический частотный порог, свою определенную частоту звука, на которую реакция нейрона максимальна. Таким образом, каждый нейрон из всей совокупности звуков воспринимает лишь определенные достаточно узкие участки частотного диапазона, не совпадающие между собой, а совокупности нейронов воспринимают весь частотный диапазон слышимых звуков, что и обеспечивает полноценное слуховое восприятие.

Правомерность этого положения подтверждается результатами протезирования слуха человека, когда электроды вживлялись в слуховой нерв, а его волокна раздражались электрическими импульсами разных частот, которые соответствовали звукосочетаниям определенных слов и фраз, обеспечивая смысловое восприятие речи.

Анализ интенсивности звука также осуществляется в слуховой сенсорной системе. При этом сила звука кодируется как частотой импульсов, так и числом возбужденных рецепторов и соответствующих нейронов. В частности, наружные и внутренние волосковые рецепторные клетки имеют разные пороги возбуждения. Внутренние клетки возбуждаются при большей силе звука, чем наружные. Кроме того, у внутренних клеток пороги возбуждения также различны. В связи с этим в зависимости от интенсивности звука меняются соотношение возбужденных рецепторных клеток кортиева органа и характер импульсации, поступающей в ЦНС. Нейроны слуховой сенсорной системы имеют различные пороги реакций. При слабом звуковом сигнале в реакцию вовлекается лишь небольшое число более возбудимых нейронов, а при усилении звука возбуждаются нейроны с меньшей возбудимостью.

Необходимо отметить, что кроме воздушной проводимости имеется костная проводимость звука, т.е. проведение звука непосредственно через кости черепа. При этом звуковые колебания вызывают вибрацию костей черепа и лабиринта, что приводит к повышению давления перилимфы в вестибулярном канале больше, чем в барабанном, так как перепонка, закрывающая круглое окно, эластична, а овальное окно закрыто стремечком. В результате этого происходит смещение основной мембраны, так же как и при воздушной передаче звуковых колебаний.

Определение локализации источника звука возможно с помощью бинаурального слуха, т. е. способности слышать одновременно двумя ушами. Благодаря бинауральному слуху человек способен более точно локализовать источник звука, чем при монауральном слухе, и определять направление звука. Для высоких звуков определение их источника обусловлено разницей силы звука, поступающего к обоим ушам, вследствие различной их удаленности от источника звука. Для низких звуков важной является разность во времени между приходом одинаковых фаз звуковой волны к обоим ушам.

Определение местоположения звучащего объекта осуществляется либо путем восприятия звуков непосредственно от звучащего объекта – первичная локализация, либо путем восприятия отраженных от объекта звуковых волн – вторичная локализация, или эхолокация. При помощи эхолокации ориентируются в пространстве некоторые животные (дельфины, летучие мыши).

Слуховая адаптация – это изменение слуховой чувствительности в процессе действия звука. Она складывается из соответствующих изменений функционального состояния всех отделов слухового анализатора. Ухо, адаптированное к тишине, обладает более высокой чувствительностью к звуковым раздражениям (слуховая сенситизация). При длительном слушании слуховая чувствительность снижается. Большую роль в слуховой адаптации играет ретикулярная формация, которая не только изменяет активность проводникового и коркового отделов слухового анализатора, но и за счет центробежных влияний регулирует чувствительность слуховых рецепторов, определяя уровень их «настройки» на восприятие слуховых раздражителей.

В органе слуха выделяют:

Наружное,

Среднее

Внутреннее ухо.

Наружное ухо включает ушную раковину и наружный слуховой проход, отграниченный от среднего уха барабанной перепонкой. Ушная раковина, приспособленная для улавливания звуков, образована эластическим хрящом, покрытым кожей. Нижняя часть ушной раковины (мочка) представляет собой кожную складку, не содержащую хряща. К височной кости ушная раковина прикреплена связками.

Наружный слуховой проход имеет хрящевую и костную части. В месте, где хрящевая часть переходит в костную, слуховой проход имеет сужение и изгиб. Длина наружного слухового прохода у взрослого человека около 33-35 мм, диаметр его просвета колеблется на разных участках от 0,8 до 0,9 см. Выстлан наружный слуховой проход кожей, в которой имеются трубчатые железы (видоизмененные потовые), вырабатывающие секрет желтоватого цвета - ушную серу.

Барабанная перепонка отделяет наружное ухо от среднего. Оно представляет собой соединительнотканную пластинку, снаружи покрытую тонкой кожей, а изнутри, со стороны барабанной полости, слизистой оболочкой. В центре барабанной перепонки имеется вдавление (пупок барабанной перепонки) - место прикрепления к перепонке одной из слуховых косточек - молоточка. У барабанной перепонки различают верхнюю тонкую, не содержащую коллагеновых волокон свободную, ненатянутую часть и нижнюю упругую, натянутую часть. Перепонка расположена косо, она образует с горизонтальной плоскостью угол в 45-55, открытый в латеральную сторону.

Среднее ухо располагается внутри пирамиды височной кости, оно включает барабанную полость и слуховую трубу, соединяющую барабанную полость с глоткой. Барабанная полость, имеющая объем около 1 см 3 , находится между барабанной перепонкой снаружи и внутренним ухом с медиальной стороны. В барабанной полости, выстланной слизистой оболочкой, находятся три слуховые косточки, подвижно соединенные друг с другом (молоточек, наковальня и стремя), передающие колебание барабанной перепонки во внутреннее ухо.

Движение слуховых косточек сдерживают прикрепляющиеся к ним миниатюрные мышцы - стременная мышца и мышца, натягивающая барабанную перепонку.

У барабанной полости имеется шесть стенок. Верхняя стенка (покрышечная) отделяет барабанную полость от полости черепа. Нижняя стенка (яремная) прилежит к яремной ямке височной кости. Медиальная стенка (лабиринтная) отделяет барабанную полость от внутреннего уха.

В этой стенке имеются овальное окно преддверия, закрытое основанием стремени, и круглое окно улитки, затянутое вторичной барабанной перепонкой. Латеральная стенка (перепончатая) образована барабанной перепонкой и окружающими ее отделами височной кости. На задней (сосцевидной) стенке находится отверстие - вход в сосцевидную пещеру. Ниже этого отверстия имеется пирамидальное возвышение, внутри которого располагается стременная мышца. Передняя (сонная) стенка отделяет барабанную полость от канала внутренней сонной артерии. На этой стенке открывается барабанное отверстие слуховой трубы, имеющей костную и хрящевую части. Костная часть представляет собой полуканал слуховой трубы, являющийся нижним отделом мышечно-трубного канала. В верхнем полуканале находится мышца, напрягающая барабанную перепонку.

Внутреннее ухо расположено в пирамиде височной кости между барабанной полостью и внутренним слуховым проходом. Оно представляет собой систему узких костных полостей (лабиринтов), содержащих рецепторные аппараты, воспринимающих звук и изменения положения тела.

В костных полостях, выстланных надкостницей, располагается перепончатый лабиринт, повторяющий форму костного лабиринта. Между перепончатым лабиринтом и костными стенками имеется узкая щель - перилимфатическое пространство, заполненное жидкостью - перилимфой.

Костный лабиринт состоит из преддверия, трех полукружных каналов и улитки. Костное преддверие имеет форму овальной полости, сообщающейся с полукружными каналами. На латеральной стенке костного преддверия имеется овальной формы окно преддверия, закрытое основанием стремени. На уровне начала улитки находится круглое окно улитки, затянутое эластичной мембраной, Три костных полукружных канала лежат в трех взаимноперпендикулярных плоскостях. В сагиттальной плоскости располагается передний полукружный канал, в горизонтальной - латеральный, во фронтальной - задний канал. Каждый полукружный канал имеет по две ножки, одна из которых (ампулярная костная ножка) перед впадением в преддверие образует расширение - ампулу. Ножки переднего и заднего полукружных каналов соединяются и образуют общую костную ножку, Поэтому три канала открываются в преддверие пятью отверстиями.

Костная улитка имеет 2,5 завитка вокруг горизонтально лежащего стержня. Вокруг стержня наподобие винта закручена костная спиральная пластинка, пронизанная тонкими канальцами, В этих канальцах проходят волокна улитковой части преддверно-улиткового нерва. В основании пластинки расположен спиральный канал, в котором лежит спиральный нервный узел. Пластинка вместе с соединяющимся с ней перепончатым улитковым протоком делит полость канала улитки на две спирально извитые полости - лестницы (преддверную и барабанную), сообщающиеся между собой в области купола улитки.

Стенки перепончатого лабиринта образованы соединительной тканью. Перепончатый лабиринт заполнен жидкостью - эндолимфой, которая через эндолимфатический проток, проходящий в водопроводе преддверия, оттекает в эндолимфатический мешок, лежащий в толще твердой мозговой оболочки на задней поверхности пирамиды. Из перилимфатического пространства перилимфа по перилимфатическому протоку, проходящему в канальце улитки, оттекает в подпаутинное пространство на нижней поверхности пирамиды височной кости.

Понятие звука и шума. Сила звука.

Звук - физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. Как и любая волна, звук характеризуется амплитудой и спектром частот. Амплитудой звуковой волны называется разница между самым высоким и самым низким значением плотности. Частотой звука называется количество колебаний воздуха в секунду. Частота измеряется в Герцах (Гц).

Волны с разной частотой воспринимаются нами как звук разной высоты. Звук частотой ниже 16 – 20 Гц (диапазона слышимости человека) называют инфразвуком; от 15 – 20 кГц до 1 ГГц, – ультразвуком, от 1 ГГц – гиперзвуком. Среди слышимых звуков можно выделить фонетические (речевые звуки и фонемы, из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.

Шум является разновидностью звука, он воспринимается людьми как неприятный, мешающий или даже вызывающий болезненные ощущения фактор, создающие акустический дискомфорт.

Для количественной оценки звука используют усредненные параметры, определяемые на основании статистических законов. Сила звука - устаревший термин, описывающий величину, подобную интенсивности звука, но не идентичную ей. Она зависит от длины волны. Единица измерения силы звука - бел (Б) . Уровень звука чаще всего измеряют в децибелах (это 0,1Б). Человек на слух может обнаружить разницу в уровне громкости приблизительно в 1 дБ.

Для измерения акустического шума, Стивеном Орфилдом, была основана в Южном Миннеаполисе «Лаборатория Орфилд». Чтобы достичь исключительной тишины, в комнате использованы стекловолоконные акустические платформы толщиной в метр, двойные стены из изолированной стали и бетон толщиной в 30 см. Комната блокирует 99,99 процентов внешних звуков и поглощает внутренние. Эта камера используется многими производителями для тестирования громкости своих продуктов, таких как клапаны сердца, звук дисплея мобильного телефона, звук переключателя на приборной панели автомобиля. Также её используют для определения качества звука.

Звуки различной силы оказывают на организм человека различные воздействия. Так звук силой до 40 дБ оказывает успокаивающее действие. От воздействия звука 60-90 дБ возникает чувство раздражения, утомляемость, головная боль. Звук силой 95-110 дБ вызывает постепенно ослабление слуха, нервно-психический стресс, различные заболевания. Звук от 114 дБ вызывает звуковое опьянение наподобие алкогольного опьянения, нарушает сон, разрушает психику, приводит к глухоте.

В России действуют санитарные нормы допустимого уровня шума, где для различных территорий и условий нахождения человека даны предельные значения уровня шума:

· на территории мкр-она 45-55 дБ;

· в школьных классах 40-45 дБ;

· больницы 35-40 дБ;

· в промышленности 65-70 дБ.

В ночное время (23:00-7:00) уровни шума должны быть на 10 дБ меньше.

Примеры силы звука в децибелах:

· Шорох листьев: 10

· Жилое помещение: 40

· Разговор: 40–45

· Офис: 50–60

· Шум в магазине: 60

· Телевизор, крик, смех на расстоянии 1 м: 70–75

· Улица: 70–80

· Фабрика (тяжелая промышленность): 70–110

· Цепная пила: 100

· Старт реактивного самолёта: 120–130

· Шум на дискотеке: 175

Восприятие звуков человеком

Слух - способность биологических организмов воспринимать звуки органами слуха. В основе возникновения звука лежат механические колебания упругих тел. В слое воздуха, непосредственно примыкающем к поверхности колеблющего тела, возникает сгущение (сжатие) и разрежения. Эти сжатия и разрежения чередуются во времени и распространяются в стороны в виде упругой продольной волны, которая достигает уха и вызывает вблизи него периодические колебания давления, воздействующие на слуховой анализатор.

Обычный человек способен слышать звуковые колебания в диапазоне частот от 16–20 Гц до 15–20 кГц. Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха.

У человека органом слуха является ухо, которое воспринимает звуковые импульсы, а также отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Он представлен тремя отделами: наружным, средним и внутренним ухом, каждый из которых выполняет свои конкретные функции.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна.

Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом, мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов. Наружный слуховой проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания. В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они соединяются между собой и с внутренним ухом (окно преддверия), они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их. Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки.

Внутреннее ухо из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка, внутри которой находится перепончатый канал, заполненный жидкостью, на нижней стенке которого расположен рецепторный аппарат слухового анализатора, покрытый волосковыми клетками. Волосковые клетки улавливают колебания жидкости, заполняющей канал. Каждая волосковая клетка настроена на определенную звуковую частоту.

Слуховой орган человека работает следующим образом. Ушные раковины улавливают колебания звуковой волны и направляют их в слуховой проход. По нему колебания направляются в среднее ухо и, достигнув барабанной перепонки, вызывают ее колебания. Через систему слуховых косточек колебания передаются дальше – во внутреннее ухо (звуковые колебания передаются перепонке овального окна). Колебания перепонки вызывают движение жидкости в улитке, она, в свою очередь, заставляет колебаться базальную мембрану. При движении волоконец волоски рецепторных клеток касаются покровной мембраны. В рецепторах возникает возбуждение, которое по слуховому нерву в конечном итоге передается в головной мозг, где через средний и промежуточный мозг возбуждение попадает в слуховую зону коры больших полушарий, расположенную в височных долях. Здесь происходит окончательное различение характера звука, его тона, ритма, силы, высоты и его смысла.

Влияние шума на человека

Сложно переоценить воздействие шума на состояние здоровья людей. Шум относится к тем факторам, к которым нельзя привыкнуть. Человеку лишь кажется, что он привык к шуму, но акустическое загрязнение, действуя постоянно, разрушает здоровье человека. Шум вызывает резонанс внутренних органов, постепенно изнашивая их незаметно для нас. Недаром в средние века существовала казнь "под колокол". Гул колокольного звона мучил и медленно убивал осужденного.

Долгое время влияние шума на организм человека специально не изучалось, хотя уже в древности знали о его вреде. В настоящее время ученые во многих странах мира ведут различные исследования с целью выяснения влияния шума на здоровье человека. В первую очередь от шума страдают нервная, сердечно-сосудистая системы и органы пищеварения. Существует зависимость между заболеваемостью и длительностью проживания в условиях акустического загрязнения. Рост болезней наблюдается после проживания в течение 8-10 лет при воздействии шума с интенсивностью выше 70 дБ.

Длительный шум неблагоприятно влияет на орган слуха, понижая чувствительность к звуку. Регулярное и длительное воздействие производственного шума в 85-90 дБ приводит к появлению тугоухости (постепенной потере слуха). Если сила звука выше 80 дБ, появляется опасность потери чувствительности находящихся в среднем ухе ворсинок – отростков слуховых нервов. Отмирание половины из них еще не ведет к ощутимой потере слуха. А если погибает больше половины - человек погрузится в мир, в котором не слышно шелеста деревьев, жужжания пчел. С потерей всех тридцати тысяч слуховых ворсинок человек попадает в мир безмолвия.

Шум обладает аккумулятивным эффектом, т.е. акустические раздражение, накапливаясь в организме, все сильнее угнетают нервную систему. Поэтому перед потерей слуха от воздействия шумов возникает функциональное расстройство центральной нервной системы. Особенно вредное влияние шум оказывает на нервно-психическую деятельность организма. Процесс нервно-психических заболеваний выше среди лиц, работающих в шумных условиях, нежели у лиц, работающих в нормальных звуковых условиях. Поражаются все виды интеллектуальной деятельности, ухудшаются настроение, иногда появляется ощущение растерянности, тревоги, испуга, страха , а при высокой интенсивности - чувство слабости, как после сильного нервного потрясения. В Великобритании, например, один из четырёх мужчин и одна из трёх женщин больны неврозами из-за высокого уровня шума.

Шумы вызывают функциональные расстройства сердечно-сосудистой системы. Изменения, происходящие в сердечнососудистой системе человека под воздействием шума, имеют следующие симптомы: болевые ощущения в области сердца, сердцебиение, неустойчивость пульса и артериального давления, иногда наблюдается наклонность к спазмам капилляров конечностей и глазного дна. Функциональные сдвиги, возникающие в системе кровообращения под влиянием интенсивного шума, со временем могут привести к стойким изменениям сосудистого тонуса, способствующим развитию гипертонической болезни.

Под влиянием шума изменяются углеводный, жировой, белковый, солевой обмены веществ, что проявляется в изменении биохимического состава крови (снижается уровень сахара в крови). Шум оказывает вредное влияние на зрительные и вестибулярные анализаторы, снижает рефлекторную деятельность , что часто становится причиной несчастных случаев и травм. Чем выше интенсивность шума, тем хуже человек видит и реагирует на происходящее.

Шум также влияет на способность к интеллектуальной и учебной деятельности. Например, на успеваемость учеников. В 1992 году в Мюнхене аэропорт перенесли в другую часть города. И выяснилось, что проживавшие рядом со старым аэропортом ученики, которые до его закрытия демонстрировали плохие показатели по чтению и запоминанию информации, в тишине стали показывать намного лучшие результаты. Зато в школах того района, куда аэропорт перенесли, успеваемость, наоборот, ухудшилась, а дети получили новое оправдание для плохих оценок.

Исследователи установили, что шум может разрушать растительные клетки. Например, эксперименты показали, что растения, подверженные обстрелу звуками, засыхают и гибнут. Причиной гибели является чрезмерное выделение влаги через листья: когда уровень шума превышает определённый предел, цветы буквально исходят слезами. Пчела теряет способность ориентироваться и перестаёт работать при шуме реактивного самолёта.

Очень шумная современная музыка также притупляет слух, вызывает нервные заболевания. У 20 процентов юношей и девушек, часто слушающих модную современную музыку, слух оказался притупленным в такой степени, как у 85 летних стариков. Особую опасность представляют плееры и дискотеки для подростков. Обычно уровень шума на дискотеке составляет 80–100 дБ, что сравнимо с уровнем шума интенсивного уличного движения или взлетающего в 100 м турбореактивного самолёта. Громкость звука плеера составляет 100–114 дБ. Почти так же оглушительно работает отбойный молоток. Здоровые барабанные перепонки без ущерба могут переносить громкость плеера в 110 дБ максимум в течение 1,5 мин. Французские учёные отмечают, что нарушения слуха в наш век активно распространяются среди молодых людей; с возрастом они, скорее всего, будут вынуждены пользоваться слуховыми аппаратами. Даже низкий уровень громкости мешает концентрации внимания во время умственной работы. Музыка, пусть даже совсем тихая, снижает внимание – это следует учитывать при выполнении домашней работы. Когда звук нарастает, организм производит много гормонов стресса, например, адреналин. При этом сужаются кровеносные сосуды, замедляется работа кишечника. В дальнейшем всё это может привести к нарушениям работы сердца и кровообращения. Ухудшение слуха из-за шума относится к неизлечимым заболеваниям. Восстановить поврежденный нерв хирургическим путем практически невозможно.

Негативно влияют на нас не только те звуки, которые мы слышим, но и те, которые находятся за пределами диапазона слышимости: прежде всего – инфразвук. Инфразвук в природе возникает при землетрясениях, ударах молний, при сильном ветре. В городе источники инфразвука - тяжелые станки, вентиляторы и любое оборудование, которое вибрирует. Инфразвук с уровнем до 145 дБ вызывает физическое напряжение, переутомление, головные боли, нарушения работы вестибулярного аппарата. Если инфразвук более сильный и длительный, то человек может ощущать вибрации в грудной клетке, сухость во рту, нарушения зрения, головную боль и головокружение.

Опасность инфразвука в том, что от него сложно защититься: в отличие от обычного шума, он практически не поддается поглощению и распространяется намного дальше. Для его подавления необходимо снизить звук в самом источнике с помощью специального оборудования: глушителей реактивного типа.

Полная тишина также оказывает вред на организм человека. Так, сотрудники одного конструкторского бюро, имевшего прекрасную звукоизоляцию, уже через неделю стали жаловаться на невозможность работы в условиях гнетущей тишины. Они нервничали, теряли работоспособность.

Конкретным примером воздействия шума на живые организмы, можно считать следующее событие. Тысячи не вылупившихся птенцов погибли в результате дноуглубительных работ, ведущихся немецкой компанией «Мебиус» по распоряжению Минтранса Украины. Шум от работающей техники разносился на 5-7км, оказывая негативное влияние на прилегающие территории Дунайского биосферного заповедника. Представители Дунайского биосферного заповедника и еще 3 организаций вынуждены были с болью констатировать гибель всей колонии пестроносой крачки и речной крачки, которые располагались на косе Птичья. Дельфины и киты выбрасываются на берег из-за сильных звуков военных гидролокаторов.

Источники шума в городе

Самое вредное воздействие оказывают звуки на человека в больших городах. Но даже в загородных поселках можно страдать от шумового загрязнения, вызванного работающими техническими приспособлениями у соседей: газонокосилкой, токарным станком или музыкальным центром. Шум от них может превышать предельно допустимые нормы. И все же основное загрязнение шумовое происходит в городе. Источником его в большинстве случаев являются транспортные средства. Самая большая интенсивность звуков исходит от автомагистралей, метро и трамваев.

Автотранспорт . Наибольшие уровни шума отмечаются на магистральных улицах городов. Средняя интенсивность движения достигает 2000-3000 транспортных единиц в час и больше, а максимальные уровни шума – 90-95 дБ.

Уровень уличных шумов определяется интенсивностью, скоростью и составом транспортного потока. Кроме того, уровень уличных шумов зависит от планировочных решений (продольный и поперечный профиль улиц, высота и плотность застройки) и таких элементов благоустройства, как покрытие проезжей части и наличие зелёных насаждений. Каждый из этих факторов способен изменить уровень транспортного шума до 10 дБ.

В промышленном городе обычен высокий процент грузового транспорта на магистралях. Увеличение, в общем потоке автотранспорта, грузовых автомобилей, особенно большегрузных с дизельными двигателями, приводит к росту уровней шума. Шум, возникающий на проезжей части магистрали, распространяется не только на примагистральную территорию, но вглубь жилой застройки.

Рельсовый транспорт. Повышение скорости движения поездов также приводит к значительному росту уровня шума в жилых зонах, расположенных вдоль железнодорожных путей или близ сортировочных станций. Максимальный уровень звукового давления на расстоянии 7,5 м от движущегося электропоезда достигает 93 дБ, от пассажирского – 91, от товарного состава –92 дБ.

Шум, возникающий при прохождении электропоездов, легко распространяется на открытой территории. Наиболее значительно звуковая энергия снижается на расстоянии первых 100 м от источника (в среднем на 10 дБ). На расстоянии 100-200 снижение шума равно 8 дБ, а расстоянии от 200 до 300 всего на 2-3 дБ. Основной источник железнодорожного шума – удары вагонов при движении на стыках и неровностях рельсов.

Из всех видов городского транспорта наиболее шумный трамвай . Стальные колёса трамвая при движении по рельсам создают уровень шума на 10 дБ выше, чем колёса автомобилей при соприкосновении с асфальтом. Трамвай создаёт шумовые нагрузки при работе двигателя, открывании дверей, подаче звуковых сигналов. Высокий уровень шума от движения трамвая – одна из основных причин сокращения трамвайных линий в городах. Однако трамвай обладает и целым рядом преимуществ, поэтому при снижении создаваемого им шума он может выиграть в соревновании с другими видами транспорта.

Большое значение имеет скоростной трамвай. Он может с успехом использоваться как основной вид транспорта в малых и средних городах, а в крупных – как городской, пригородный и даже как междугородный, для связи с новыми жилыми массивами, промышленными зонами, аэропортами.

Воздушный транспорт. Значительный удельный вес в шумовом режиме многих городов занимает воздушный транспорт. Нередко аэропорты гражданской авиации оказываются расположенными в непосредственной близости от жилой застройки, а воздушные трассы проходят над многочисленными населёнными пунктами. Уровень шума зависит от направления взлётно-посадочных полос и трасс пролётов самолётов, интенсивности полётов в течение суток, сезонов года, от типов самолётов, базирующихся на данном аэродроме. При круглосуточной интенсивной эксплуатации аэропортов эквивалентные уровни звука на жилой территории достигают в дневное время 80 дБ, в ночное – 78 дБ, максимальные уровни шума колеблются от 92 до 108 дБ.

Промышленные предприятия. Источником большого шума в жилых кварталах городов являются промышленные предприятия. Нарушение акустического режима отмечается в тех случаях, когда их территория непосредственно к жилым массивам. Изучение промышленного шума показало, что по характеру звучания он постоянный и широкополосный, т.е. звук различных тонов. Наиболее значительные уровни наблюдаются на частотах 500-1000 Гц, то есть в зоне наибольшей чувствительности органа слуха. В производственных цехах устанавливается большое количество разнотипного технологического оборудования. Так, ткацкие цехи могут быть охарактеризованы уровнем звука 90-95 дБ А, механические и инструментальные - 85-92, кузнечнопрессовые – 95-105, машинные залы компрессорных станций – 95-100 дБ.

Домашняя техника. С наступлением постиндустриальной эпохи всё больше и больше источников шумового загрязнения (а также электромагнитного) появляется и внутри жилища человека. Источником этого шума является бытовая и офисная техника.

Человек воспринимает звук посредством уха (рис.).

Снаружи расположена раковина внешнего уха , переходящая в слуховой канал диаметром D 1 = 5 мм и длиной 3 см .

Далее расположена барабанная перепонка, которая вибрирует под действием звуковой волны (резонирует). Перепонка присоединена к костям среднего уха , передающим вибрацию другой перепонке и далее во внутреннее ухо.

Внутреннее ухо имеет вид закрученной трубки ("улитки") с жидкостью. Диаметр этой трубки D 2 = 0,2 мм длина 3 – 4 см длинной.

Поскольку колебания воздуха в звуковой волне слабые, чтобы непосредственно возбудить жидкость в улитке, то система среднего и внутренне уха совместно с их перепонками играют роль гидравлического усилителя. Площадь барабанной перепонки внутреннего уха меньше площади перепонки среднего уха. Давление, оказываемое звуком на перепонки, обратно пропорционально площади:

.

Поэтому давление на внутреннее существенно ухо возрастает:

.

Во внутреннем ухе по всей его длине натянута ещё одна мембрана (продольная), жёсткая в начале уха и мягкая в конце. Каждый участок этой продольной мембраны может колебаться с собственной частотой. В жёстком участке возбуждаются колебания высокой частоты, а в мягком – низкой. Вдоль этой мембраны расположен преддверноулитковый нерв, который воспринимают колебания и передаёт их в мозг.

Самая низкая частота колебаний источника звука 16-20 Гц воспринимается ухом как низкий басовый звук. Область наибольшей чувствительности слуха захватывает часть среднечастотного и часть высокочастотного поддиапазонов и соответствует интервалу частот от 500 Гц до 4-5 кГц . Человеческий голос и звуки, издаваемые большинством важных нам процессов в природе, имеют частоту в этом же интервале. При этом звуки частотой от 2 кГц до 5 кГц улавливаются ухом как звон или свист. Иначе говоря, самая важная информация передаётся на звуковых частотах приблизительно вплоть до 4-5 кГц .

Подсознательно человек разделяет звуки на "положительные", "отрицательные" и "нейтральные".

К отрицательным относятся звуки, которые прежде были не знакомы, странные и необъяснимые. Они вызывают страх и беспокойство. К ним также относятся низкочастотные звуки, например, низкий барабанный стук или вой волка, т. к. возбуждают страх. Кроме того, страх и ужас возбуждают неслышимые низкочастотные звук (инфразвук). Примеры :

    В 30-е годы 20 века в одном из лондонских театров в качестве сценического эффекта применили громадную органную трубу. От инфразвука этой трубы всё здание задрожало, а в людях поселился ужас.

    Сотрудники национальной лаборатории физики в Англии провели эксперимент, добавив к звучанию обычных акустических инструментов классической музыки сверхнизкие (инфразвуковые) частоты. Слушатели почувствовали упадок настроения и испытали чувство страха.

    На кафедре акустики МГУ проводились исследования влияние рока и поп музыки не человеческий организм. Оказалось, что частота основного ритма композиции «Дип Пёпл» вызывает неконтролируемое возбуждение, потерю контроля над собой, агрессивность к окружающим или негативные эмоции к себе. Композиция «The Beatles», на первый взгляд благозвучная, оказалась вредной и даже опасной, т. к. имеет основной ритм около 6,4 Гц. Эта частота резонирует с частотами грудной клетки, брюшной полости и близка к собственной частоте головного мозга (7 Гц.). Поэтому при прослушивании этой композиции ткани живота и груди начинают болеть и постепенно разрушаться.

    Инфразвук вызывает в организме человека колебания различных систем, в частности, сердечно-сосудистой. Это оказывает неблагоприятное воздействие и может привести, например, к гипертонической болезни. Колебания на частоте 12 Гц могут, если их интенсивность превысит критический порог, вызвать гибель высших организмов, в т. ч. людей. Эта и другие инфразвуковые частоты присутствуют в производственных шумах, шумах автострад и др. источников.

Замечание : У животных резонанс музыкальных частот и собственных может привести к распаду функции мозга. При звучании "металлического рока" коровы перестают давать молоко, а вот свиньи, наоборот, обожают металлический рок.

Положительными являются звуки ручья, прилива моря или пения птиц; они вызывают успокоение.

Кроме того, и рок не всегда плох. Например, музыка типа «кантри», исполняемая на банджо, помогает выздоравливать, хотя плохо влияет на здоровье в самом начальном этапе заболевания.

К положительным звукам относятся классические мелодии. Например, американские учёные помещали грудных недоношенных младенцев в боксы для прослушивания музыки Баха, Моцарта, и дети быстро поправлялись, набирали вес.

Благоприятно влияет на здоровье человека колокольный звон.

Любой эффект звука усиливается в полумраке и темноте, поскольку уменьшается доля информации, поступающей с помощь зрения

        Поглощение звука в воздухе и ограждающими поверхностями

Поглощение звука в воздухе

В каждый момент времени в любой точке помещения интенсивность звука равна сумме интенсивности прямого звука, непосредственно исходящего от источника, и интенсивности звука, отражённого от ограждающих поверхностей помещения:

При распространении звука в атмосферном воздухе и в любой другой среде возникают потери интенсивности. Эти потери обусловлены поглощением звуковой энергии в воздухе и ограждающими поверхностями. Рассмотрим поглощение звука с помощью волновой теории .

Поглощение звука – это явление необратимого превращения энергии звуковой волны в другой вид энергии, прежде всего в энергию теплового движения частиц среды . Поглощение звука происходит и в воздухе, и при отражении звука от ограждающих поверхностей.

Поглощение звука в воздухе сопровождается уменьшением звукового давления. Пусть звук распространяется вдоль направления r от источника. Тогда в зависимости от расстояния r относительно источника звука амплитуда звукового давления убывает по экспоненциальному закону :

, (63)

где p 0 – начальное звуковое давление при r = 0

,

 – коэффициент поглощения звука. Формула (63) выражает закон поглощения звука .

Физический смысл коэффициента состоит в том, что коэффициент поглощения численно равен величине, обратной расстоянию, на котором звуковое давление уменьшается в e = 2,71 раз:

Единица измерения в СИ:

.

Поскольку сила звука (интенсивность) пропорциональная квадрату звукового давления, то этот же закон поглощения звука можно записать в виде:

, (63*)

где I 0 – сила звука (интенсивность) вблизи источника звука, т. е. при r = 0 :

.

Графики зависимости p зв (r ) и I (r ) представлены на рис. 16.

Из формулы (63*) следует, что для уровня силы звука справедливо уравнение:

.

. (64)

Следовательно, единица измерения коэффициента поглощения в СИ: непер на метр

,

кроме того, можно вычислять в белах на метр (Б/м ) или децибелах на метр (дБ/м ).

Замечание : Поглощение звука можно характеризовать коэффициентом потерь , который равен

, (65)

где – длина звуковой волны, произведение  логарифмический коэффициент затухания звука. Величину, равную обратной величине коэффициента потерь

,

называют добротностью .

Полной теории поглощении звука в воздухе (атмосфере) пока нет. Многочисленные эмпирические оценки дают разные значения коэффициента поглощения.

Первая (классическая) теория поглощения звука была создана Стоксом и основана на учёте влияния вязкости (внутреннего трения между слоями среды) и теплопроводности (выравнивания температуры между слоями среды). Упрощенная формула Стокса имеет вид:

, (66)

где вязкость воздуха, коэффициент Пуассона, 0 плотность воздуха при 0 0 С, скорость звука в воздухе. Для обычных условий эта формула примет вид:

. (66*)

Однако формула Стокса (63) или (63*) справедлива лишь для одноатомных газов, атомы которых имеют три поступательные степени свободы, т. е. при =1,67 .

Для газов из 2, 3 или многоатомных молекул значение существенно больше, т. к. звук возбуждает вращательные и колебательные степени свободы молекул. Для таких газов (в т. ч. для воздуха) более точной является формула

, (67)

где T н = 273,15 К – абсолютная температура таяния льда ("тройная точка"), p н = 1,013 . 10 5 Па – нормальное атмосферное давление, T и p – реальные (измеряемые) температура и атмосферное давление воздуха, =1,33 для двухатомных газов, =1,33 для трёх- и многоатомных газов.

Поглощение звука ограждающими поверхносятми

Поглощение звука ограждающими поверхностями происходит при отражении от них звука. При этом часть энергии звуковой волны отражается и обуславливает возникновения стоячих звуковых волн, а другая энергии преобразуется в энергию теплового движения частиц преграды. Эти процессы характеризуют коэффициентом отражения и коэффициентом поглощения ограждающей конструкции.

Коэффициент отражения звука от преграды – это безразмерная величина, равная отношению части энергии волны W отр , отражённой от преграды, ко всей энергии волны W пад , падающей на преграду

.

Поглощение звука преградой характеризуют коэффициентом поглощения безразмерной величиной, равной отношению части энергии волны W погл , поглощённой преградой (и перешедшей во внутреннюю энергию вещества преграды), ко всей энергии волны W пад , падающей на преграду

.

Средний коэффициент поглощения звука всеми ограждающими поверхностями равен

,

, (68*)

где i коэффициент поглощения звука материалом i -й преграды, S i – площадь i -й преграды, S – общая площадь преград, n - количество разных преград.

Из этого выражения можно сделать вывод, что средний коэффициент поглощения соответствует единому материалу, которым можно было бы покрыть все поверхности преград помещения с сохранением общего звукопоглощения (А ), равного

. (69)

Физический смысл общего звукопоглощения (А) : оно численно равно коэффициенту поглощения звука открытым проёмом площадью 1 м 2 .

.

Единица измерения звукопоглощения называется сэбин :

.




© 2024
womanizers.ru - Журнал современной женщины