10.10.2019

Системы рациональных неравенств. Рациональные неравенства. Подробная теория с примерами


Пусть надо найти числовые значения х, при которых превращаются в верные числовые неравенства одновременно несколько рациональных неравенств. В таких случаях говорят, что надо решить систему рациональных неравенств с одним неизвестным х.

Чтобы решить систему рациональных неравенств, надо найти все решения каждого неравенства системы. Тогда общая часть всех найденных решений и будет решением системы.

Пример: Решить систему неравенств

(х -1)(х - 5)(х - 7) < 0,

Сначала решаем неравенство

(х - 1)(х - 5)(х - 7) < 0.

Применяя метод интервала (рис. 1), находим, что множество всех решении неравенства (2) состоит из двух интервалов: (-, 1) и (5, 7).

Рисунок 1

Теперь решим неравенство

Применяя метод интервалов (рис. 2), находим, что множество всех решении неравенства (3) также состоит их двух интервалов: (2, 3) и (4, +).

Теперь надо найти общую часть решении неравенств (2) и (3). Нарисуем координатную ось х и отметим на ней найденные решения. Теперь ясно, что общей частью решении неравенств (2) и (3) является интервал(5, 7) (рис. 3).

Следовательно, множество всех решении системы неравенств (1) составляет интервал (5, 7).

Пример: Решить систему неравенств

х2 - 6х + 10 < 0,

Решим сначала неравенство

х 2 - 6х + 10 < 0.

Применяя метод выделения полного квадрата, можно написать, что

х 2 - 6х + 10 = х 2 - 2х3 + 3 2 - 3 2 + 10 = (х - 3) 2 +1.

Поэтому неравенство (2) можно записать в виде

(х - 3) 2 + 1 < 0,

откуда видно, что оно не имеет решении.

Теперь можно не решать неравенство

так как ответ уже ясен: система (1) не имеет решении.

Пример: Решить систему неравенств

Рассмотрим сначала первое неравенство; имеем

1 < 0, < 0.

С помощью кривой знаков находим решения этого неравенства: х < -2; 0 < x < 2.

Решим теперь второе неравенство заданной системы. Имеем x 2 - 64 < 0, или (х - 8)(х + 8) < 0. С помощью кривой знаков находим решения неравенства: -8 < x < 8.

Отметив найденные решения первого и второго неравенства на общей числовой прямой (рис. 6), найдем такие промежутки, где эти решения совпадают (пресечение решении): -8 < x < -2; 0 < x < 2. Это и есть решение системы.

Пример: Решить систему неравенств

Преобразуем первое неравенство системы:

х 3 (х - 10)(х + 10) 0, или х(х - 10)(х + 10) 0

(т.к. множители в нечетных степенях можно заменять соответствующими множителями первой степени); с помощью метода интервалов найдем решения последнего неравенства: -10 х 0, х 10.

Рассмотрим второе неравенство системы; имеем

Находим (рис. 8) х -9; 3 < x < 15.

Объединив найденные решения, получим (рис. 9) х 0; х > 3.

Пример: Найти целочисленные решения системы неравенств:

х + y < 2,5,

Решение: Приведем систему к виду

Складывая первое и второе неравенства, имеем y < 2, 75, а учитывая третье неравенство, найдем 1 < y < 2,75. В этом интервале содержится только одно целое число 2. При y = 2 из данной системы неравенств получим

откуда -1 < x < 0,5. В этом интервале содержится только одно целое число 0.


Примеры:

\(\frac{9x^2-1}{3x}\) \(\leq0\)

\(\frac{1}{2x}\) \(+\) \(\frac{x}{x+1}\) \(<\)\(\frac{1}{2}\)

\(\frac{6}{x+1}\) \(>\) \(\frac{x^2-5x}{x+1}\) .

При решении дробных рациональных неравенств используется метод интервалов. Поэтому если алгоритм, приведенный ниже, вызовет у вас затруднения, посмотрите статью по .

Как решать дробные рациональные неравенства:

Алгоритм решения дробно-рациональных неравенств.

    Примеры:

    Расставьте знаки на интервалах числовой оси. Напомню правила расстановки знаков:

    Определяем знак в самом крайнем правом интервале - берем число с этого интервала и подставляем его в неравенство вместо икса. После этого определяем знаки в скобках и результат перемножения этих знаков;

    Примеры:


    Выделите нужные промежутки. Если есть отдельно стоящий корень, то отметьте его флажком, чтоб не забыть внести его в ответ (см. пример ниже).

    Примеры:

    Запишите в ответ выделенные промежутки и корни, отмеченные флажком (если они есть).

    Примеры:
    Ответ: \((-∞;-1)∪(-1;1,2]∪

    Алгебра, 9 класс УМК: А.Г.Мордкович. Алгебра. 9 класс. В 2ч. Ч.1.Учебник; Ч.2.Задачник; М.: Мнемозина, 2010 Уровень обучения: базовый Тема урока: Системы рациональных неравенств. (Первый урок по теме, всего на изучение темы отводится 3 часа) Урок изучения новой темы. Цель урока: повторить решение линейных неравенств; ввести понятия системы неравенств, объяснить решение простейших систем линейных неравенств; формировать умение решать системы линейных неравенств любой сложности. Задачи: Образовательные: изучение темы на основе имеющихся знаний, закрепление практических умений и навыков решений систем линейных неравенств в результате самостоятельной работы учащихся и лекционно-консультативной деятельности наиболее подготовленных из них. Развивающие: развитие познавательного интереса, самостоятельности мышления, памяти, инициативы учащихся через использование коммуникативно - деятельностной методики и элементов проблемного обучения. Воспитательные: формирование коммуникативных умений, культуры общения, сотрудничества. Методы проведения: - лекция с элементами беседы и проблемного обучения; -самостоятельная работа учащихся с теоретическим и практическим материалом по учебнику; -выработка культуры оформления решения систем линейных неравенств. Планируемые результаты: учащиеся вспомнят как решать линейные неравенства, отмечать пересечение решений неравенств на числовой прямой, научатся решать системы линейных неравенств. Оборудование урока: классная доска, раздаточный материал (приложение), учебники, рабочие тетради. Содержание урока: 1. Организационный момент. Проверка домашнего задания. 2. Актуализация знаний. Учащиеся вместе с учителем заполняют таблицу на доске: Неравенство Рисунок Промежуток Ниже приводится готовая таблица: Неравенство Рисунок Промежуток 3. Математический диктант. Подготовка к восприятию новой темы. 1.По образцу таблицы решить неравенства: Вариант 1 Вариант 2 Вариант 3 Вариант 4 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Вариант 1 Вариант 2 Вариант 3 Вариант 4 4. Объяснение нового материала. Объяснение нового материала (стр.40-44): 1. Дать определение системы неравенств (стр. 41). Опр-е: Несколько неравенств с одной переменной х образуют систему неравенств, если ставиться задача найти все такие значения переменной, при которых каждое из заданных неравенств с переменной обращается в верное числовое неравенство. 2. Ввести понятие частное и общее решение системы неравенств. Любое такое значение х называют решением (или частным решением) системы неравенств. Множество всех частных решений системы неравенств представляет собой общее решение системы неравенств. 3. Рассмотреть в учебнике решение систем неравенств по примеру №3(а, б, в). 4. Обобщить рассуждения, решив систему:. 5. Закрепление нового материала. Решить задания из № 4.20 (а,б), 4.21 (а,б) . 6. Проверочная работа Проверить усвоение нового материала, активно помогая в решении заданий по вариантам: Вариант 1 а, в №4.6, 4.8 Вариант 2 б, г № 4.6, 4.8 7. Подведение итогов. Рефлексия С какими новыми понятиями вы сегодня познакомились? Научились ли вы находить решения системы линейных неравенств? Что вам более всего удалось, какие моменты были выполнены наиболее успешно? 8. Домашнее задание: № 4.5, 4.7.; теория в учебнике стр. 40-44; Для учащихся с повышенной мотивацией № 4.23 (в,г). Приложение. Вариант 1. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос. Вариант 2. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос. Вариант 3. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос. Вариант 4. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос.

    Скачать: Алгебра 9кл - конспект [Безденежных Л.В.].docx
  1. конспект уроков 2-4 [Зверева Л.П.]

     Алгебра 9класс УМК: АЛГЕБРА-9КЛАСС, А.Г. МОРДКОВИЧ.П.В. Семёнов, 2014год. Уровень -- обучения-базовый Тема урока: Системы рациональных неравенств Общее количество часов, отведенное на изучение темы-4часа Место урока в системе уроков по теме урок №2 ;№3; №4. Цель урока: Научить учащихся составлять системы неравенств, а также научить решать уже готовые системы, предложенные автором учебного пособия. Задачи урока: Формировать умения: свободно решать системы неравенств аналитически, а также уметь переносить решение на координатную прямую с целью правильной записи ответа, самостоятельно работать с заданным материалом. .Планируемые результаты: Учащиеся должны уметь решать уже готовые системы, а также составлять системы неравенств по текстовому условию заданий и решать составленную модель. Техническое обеспечение урока:УМК: АЛГЕБРА-9КЛАСС, А.Г. МОРДКОВИЧ.П.В. Семёнов. Рабочая тетрадь, проектор для проведения устного счёта, распечатки дополнительных заданий для сильных учащихся. Дополнительное методическое и дидактическое обеспечение урока (возможны ссылки на Интернет-ресурсы): 1.Пособие Н.Н.Хлевнюк, М.В. Иванова, В.Г. Иващенко, Н.С. Мелкова «Формирование вычислительных навыков на уроках математики 5-9 классы» 2.Г.Г.Левитас «Математические диктанты» 7-11 класс.3. Т.Г. Гулина «Математический тренажёр» 5-11 (4 уровня сложности) Учитель математики: Зверева Л.П. У р о к № 2 Цели: Отработка навыков решения системы рациональных неравенств с использованием для наглядности результата решения геометрической интерпретации. Ход урока 1.Организационный момент: Настрой класса на работу, сообщение темы и цели урока 11 Проверка домашней работы 1. Теоретическая часть: * Что собой представляет аналитическая запись рационального неравенства * Что собой представляет аналитическая запись системы рациональных неравенств *Что значит решить систему неравенств *Чем является результат решения системы рациональных неравенств. 2. Практическая часть: *Решить на доске задания, вызвавшие затруднения у учащихся. В ходе выполнения домашнего задания II1 Выполнение упражнений. 1.Повторить способы разложения многочлена на множители. 2. Повторить, в чем заключается метод интервалов при решении неравенств. 3. Решить систему. Решение ведёт ученик сильный у доски под контролем учителя. 1) Решим неравенство 3х – 10 > 5х – 5; 3х – 5х> – 5 + 10; – 2х> 5; х< – 2,5. 2) Решим неравенство х2 + 5х + 6 < 0; Найдём корни данного трёхчлена х2 + 5х + 6 = 0; D = 1; х1=-3 х2 = – 2; тогда квадратный трёхчлен разложим по корням (х + 3)(х + 2) < 0. Имеем – 3 <х< – 2. 3) Найдем решение системы неравенств, для этого вынесим оба решения на одну числовую прямую. Вывод: решения совпали на промежутке от-3 до - 2,5(произошло перекрытие штриховок) О т в е т: – 3 <х< – 2,5. 4. Решить № 4.9 (б) самостоятельно споследующей проверкой. О т в е т: нет решений. 5.Повторяем теорему о квадратном трехчлене с отрицательным и положительным дискриминантом. Решаем №4.10(г) 1) Решим неравенство – 2х2 + 3х – 2 < 0; Найдём корни – 2х2 + 3х – 2 = 0; D = 9 – 16 = = – 7 < 0. По теореме неравенство верно при любых значениях х. 2) Решим неравенство –3(6х – 1) – 2х<х; – 18х + 3 – 2х<х; – 20х – х<< – 3; – 21х<– 3; 3) х> Решение данной системы неравенств х> О т в е т: х> 6. Решить № 4.10 (в) на доске и в тетрадях. Решим неравенство 5х2 – 2х + 1 ≤ 0. 5х2–2х + 1 = 0; D = 4 – 20 = –16 < 0. По теореме неравенство не имеет решений, а это значит, что данная система не имеет решений. О т в е т: нет решений. 7. Решить № 4.11 (в) самостоятельно. Один учащийся решает на доске, другие в тетрадях, потом проверяется решение. в) 1) Решим неравенство 2х2 + 5х + 10 > 0. 2х2 + 5х + 10 = 0; D = –55 < 0. По теореме неравенство верно при всех значениях х.-любое число 2) Решим неравенство х2 ≥ 16; х2 – 16 ≥ 0; (х – 4)(х + 4) ≥ 0; х = 4; х = – 4. Решение х ≤ –4 их ≥ 4. Объединяем решения двух неравенств в систему 3) Решение системы неравенств являются два неравенства О т в е т: х ≤ – 4; х ≥ 4. 8. Решить № 4.32 (б) на доске и в тетрадях. Решение Наименьшее целое число равно –2; наибольшее целое число равно 6. О т в е т: –2; 6. 9. Повторение ранее изученного материала. 1) Решить № 4.1 (а; -г) 4.2(а-г) на с. 25 устно. 2) Решить графически уравнение Строим графики функций y = –1 – x. О т в е т: –2. III. Итоги урока. 1. В курсе алгебры 9 класса мы будем рассматривать только системы из двух неравенств. 2. Если в системе из нескольких неравенств с одной переменной одно неравенство не имеет решений, то и система не имеет решений. 3. Если в системе из двух неравенств с одной переменной одно неравенство выполняется при любых значениях переменной, то решением системы служит решение второго неравенства системы. Домашнее задание: рассмотреть по учебнику решение примеров 4 и 5 на с. 44–47 и записать решение в тетрадь; решить № 4.9 (а; в), № 4.10 (а; б), № 4.11 (а; б), № 4.13 (а;б). . У р о к 3 Цели: Научить учащихся при решении двойных неравенств и нахождении области определения выражений, составлять системы неравенств и решать их, а также научить решать системы содержащих модули; Ход урока 1.Организационный момент: Настрой класса на работу, сообщение темы и цели урока 1I. Проверка домашнего задания. 1. Проверить выборочно у нескольких учащихся выполнение ими домашнего задания. 2. Решить на доске задания, вызвавшие затруднения у учащихся. 3. Устно решить № 4.2 (б) и № 4.1 (г). 4.Устная вычислительная работа: Вычисли рациональным способом: а)53,76*(-7.9) -53,76 *2,1 б) -0,125*32.6*(-8) в) Выразим указанную переменную из заданной формулы: 2a= ,y=? II. Объяснение нового материала. 1. Двойное неравенство можно решить двумя способами: а) сведением к системе двух неравенств; б) без системы неравенств с помощью преобразований. 2. Решить двойное неравенство № 4.15 (в) двумя способами. а) сведением к системе двух неравенств; I с п о с о б Решение – 2 <х< – 1. О т в е т: (– 2; – 1). б) без системы неравенств с помощью преобразований II с п о с о б 6 < – 6х< 12 | : (– 6) – 1 >х> – 2, тогда – 2 < х < – 1. О т в е т: (– 2; – 1). 3. Решить № 4.16 (б; в). I с п о с о б сведением к системе двух неравенств; б) – 2 ≤ 1 – 2х ≤ 2. Решим систему неравенств: О т в е т: II с п о с о б без системы неравенств с помощью преобразований – 2 ≤ 1 – 2х ≤ 2; прибавим к каждой части неравенства число (– 1), получим – 3 ≤ – 2х ≤ 1; разделим на (– 2), тогда в) – 3 << 1. Умножим каждую часть неравенства на 2, получим – 6 < 5х + 2 < 2. Решим систему неравенств: О т в е т: – 1,6 <х< 0. III. Выполнение упражнений. 1. Решить № 4.18 (б) и № 4.19 (б) на доске и в тетрадях. 2. Решить № 4.14 (в) методом интервалов. в) 1) х2 – 9х + 14 < 0; Найдём корни квадратного трёхчлена и разложим квадратный трёхчлен по корням (х – 7)(х – 2) < 0; х = 7; х = 2 Решение 2<х< 7. 2) х2 – 7х – 8 ≤ 0; Найдём корни квадратного трёхчлена и разложим квадратный трёхчлен по корням (х – 8)(х + 1) ≤ 0; х = 8; х = – 1 Решение – 1 ≤ х ≤ 8. Соединим решения каждого неравенства на одной прямой т.е. создадим геометрическую модель. та часть прямой где произошло пересечение решений есть конечный результат О т в е т: 2 <х< 7. 4) Решить № 4.28 (в) самостоятельно с проверкой. в) Решим систему неравенств составленную из подкоренных выражений. 1) (х – 2)(х – 3) ≥ 0; х = 2; х = 3 Решение х ≤ 2 и х ≥ 3. 2) (5 – х)(6 – х) ≥ 0; – 1(х – 5) · (– 1)(х – 6) ≥ 0; (х – 5)(х – 6) ≥ 0 х = 5; х = 6 Решение х ≤ 5 и х ≥ 6. 3) О т в е т: х ≤ 2, 3 ≤ х ≤ 5, х ≥ 6. 5. Решение систем неравенств, содержащих переменную под знаком модуля. Решить № 4.34 (в; г). Учитель объясняет решение в) 1) | х + 5 | < 3 находим точку где модуль обращается в 0 х = -5 Решение – 8 <х< – 2. 2) | х – 1 | ≥ 4 находим точку где модуль обращается в 0 х = 1 Решение х ≤ – 3 и х ≥ 5. Соединили решения каждого неравенства в единую модель 3) О т в е т: – 8 <х ≤ 3. г) 1) | х – 3 | < 5; Решение – 2 <х< 8. 2) | х + 2 | ≥ 1 Решение х ≤ – 3 и х ≥ – 1. 3) О т в е т: –1 ≤ х< 8. 6. Решить № 4.31 (б). Учащиеся решают самостоятельно. Один ученик решает на доске, остальные в тетрадях, затем проверяется решение. б) Решение Середина промежутка О т в е т: 7. Решить № 4.38 (а; б). Учитель на доске с помощью числовой прямой показывает решение данного упражнения, привлекая к рассуждениям учащихся. О т в е т: а) р< 3; р ≥ 3; б) р ≤ 7; р> 7. 8. Повторение ранее изученного материала. Решить № 2.33. Пусть первоначальная скорость велосипедиста х км/ч, после уменьшения стала (х – 3) км/ч. 15x – 45 + 6x = 1,5x(x – 3); 21x – 45 = 1,5x2 – 4,5x; 1,5x2 – 25,5x + 45 = 0 | : 1,5; тогда х2 – 17х + 30 = 0; D = 169; х1 = 15; х2 = 2 не удовлетворяет смыслу задачи. О т в е т: 15 км/ч; 12 км/ч. IV.Вывод по уроку: Науроке учились решать системы неравенств усложнённого вида особенно с модулем, попробовали свои силы в самостоятельной работе. Выставление отметок. Домашнее задание: выполнить на отдельных листочках домашнюю контрольную работу №1 с № 7 по № 10 на с. 32–33 , № 4.34 (а; б), № 4.35 (а; б). У р о к 4 Подготовка к контрольной работе Цели: обобщить и систематизировать изученный материал, подготовить учащихся к контрольной работе по теме «Системы рациональных неравенств» Ход урока 1. Организационный момент: Настрой класса на работу, сообщение темы и цели урока. 11.Повторение изученного материала. *Что значит решить систему неравенств *Чем является результат решения системы рациональных неравенств 1. Собрать листочки с выполненной домашней контрольной работой. 2. Какие правила применяют при решении неравенств? Объясните решение неравенств: а) 3х – 8 <х + 2; б) 7(х – 1) ≥ 9х + 3. 3. Сформулируйте теорему для квадратного трехчлена с отрицательным дискриминантом. Устно решите неравенства: а) х2 + 2х + 11 > 0; б) – 2х2 + х – 5 > 0; в) 3х2 – х + 4 ≤ 0. 4. Сформулируйте определение системы неравенств с двумя переменными. Что значит решить систему неравенств? 5. В чем заключается метод интервалов, активно используемый при решении рациональных неравенств? Объясните это на примере решения неравенства: (2x – 4)(3 – x) ≥ 0; I11. Тренировочные упражнения. 1. Решить неравенство: а) 12(1 – х) ≥ 5х – (8х + 2); б) – 3х2 + 17х + 6 < 0; в) 2. Найдите область определения выражения. а) f(х) = 12 + 4х – х2 ≥ 0; – х2 + 4х + 12 ≥ 0 | · (– 1); х2 – 4х – 12 ≤ 0; D = 64; х1 = 6; х2 = – 2; (х – 6)(х + 2) ≤ 0 О т в е т: – 2 ≤ х ≤ 6 или [– 2; 6]. б) f(х)= х2 + 2х + 14 ≥ 0; D< 0. По теореме о квадратном трехчлене с отрицательным дискриминантом имеемх – любое число. О т в е т: множество решений или (– ∞; ∞). 2. Решите двойное неравенство и укажите, если возможно, наибольшее и наименьшее целое решение неравенства Р е ш е н и е Умножим каждую часть неравенства на 5, получим 0 – 5 < 3 – 8х ≤ 15; – 8 < – 8х ≤ 12; – 1,5 ≤ х< 1. Наибольшее целое число 0, наименьшее целое число (– 1). О т в е т: 0; – 1. 4. Решить № 76 (б) на доске и в тетрадях. б) Р е ш е н и е Для нахождения области определения выражения решим систему неравенств 1) х = х = 5. Решение ≤х< 5. 2) Решение х< 3,5 и х ≥ 4. 3) О т в е т: ≤х< 3,5 и 4 ≤ х< 5. 5. Найти область определения выражения. а) f(х) = б) f(х) = а) О т в е т: – 8 <х ≤ – 5; х ≥ – 3. б) О т в е т: х ≤ – 3; – 2 <х ≤ 4. 6. Решить систему неравенств (самостоятельно). Р е ш е н и е Выполнив преобразования каждого из неравенств системы, получим: О т в е т: нет решений. 7. Решить № 4.40*. Решение объясняет учитель. Если р = 2, то неравенство примет вид 2х + 4 > 0, х> – 2. Это не соответствует ни заданию а), ни заданию б). Значит, можно считать, что р ≠ 2, то есть заданное неравенство является квадратным. а) Квадратное неравенство вида ах2 + bх + с> 0 не имеет решений, если а< 0, D< 0. Имеем D = (р – 4)2 – 4(р – 2)(3р – 2) = – 11р2 + 24р. Значит, задача сводится к решению системы неравенств Решив эту систему, получим р< 0. б) Квадратное неравенство вида ах2 + bх + с> 0 выполняется при любых значениях х, если а> 0 и D< 0. Значит, задача сводится к решению системы неравенств Решив эту систему, получим р> IV. Итоги урока. Необходимо дома просмотреть весь изученный материал и подготовиться к контрольной работе. Домашнее задание: № 1.21 (б; г), № 2.15 (в; г); № 4.14 (г), № 4.28 (г); № 4.19 (а), № 4.33 (г).

    Продолжаем разбирать способы решения неравенств, имеющих в составе одну переменную. Мы уже изучили линейные и квадратные неравенства, которые представляют из себя частные случаи рациональных неравенств. В этой статье мы уточним, неравенства какого типа относятся к рациональным, расскажем, на какие виды они делятся (целые и дробные). После этого покажем, как правильно их решать, приведем нужные алгоритмы и разберем конкретные задачи.

    Yandex.RTB R-A-339285-1

    Понятие рациональных равенств

    Когда в школе изучают тему решения неравенств, то сразу берут рациональные неравенства. На них приобретаются и оттачиваются навыки работы с этим видом выражений. Сформулируем определение данного понятия:

    Определение 1

    Рациональное неравенство представляет из себя такое неравенство с переменными, которое содержит в обоих частях рациональные выражения.

    Отметим, что определение никак не затрагивает вопрос количества переменных, значит, их может быть сколь угодно много. Следовательно, возможны рациональные неравенства с 1 , 2 , 3 и более переменными. Чаще всего приходится иметь дело с выражениями, содержащими всего одну переменную, реже две, а неравенства с большим количеством переменных обычно в рамках школьного курса не рассматривают вовсе.

    Таким образом, мы можем узнать рациональное неравенство, посмотрев на его запись. И с правой, и с левой стороны у него должны быть расположены рациональные выражения. Приведем примеры:

    x > 4 x 3 + 2 · y ≤ 5 · (y − 1) · (x 2 + 1) 2 · x x - 1 ≥ 1 + 1 1 + 3 x + 3 · x 2

    А вот неравенство вида 5 + x + 1 < x · y · z не относится к рациональным, поскольку слева у него есть переменная под знаком корня.

    Все рациональные неравенства делятся на целые и дробные.

    Определение 2

    Целое рациональное равенство состоит из целых рациональных выражений (в обеих частях).

    Определение 3

    Дробно рациональное равенство – это такое равенство, которое содержит дробное выражение в одной или обеих своих частях.

    Например, неравенства вида 1 + x - 1 1 3 2 2 + 2 3 + 2 11 - 2 · 1 3 · x - 1 > 4 - x 4 и 1 - 2 3 5 - y > 1 x 2 - y 2 являются дробно рациональными, а 0 , 5 · x ≤ 3 · (2 − 5 · y) и 1: x + 3 > 0 – целыми.

    Мы разобрали, что из себя представляют рациональные неравенства, и выделили их основные типы. Можем переходить дальше, к обзору способов их решения.

    Допустим, что нам требуется найти решения целого рационального неравенства r (x) < s (x) , которое включает в себя только одну переменную x . При этом r (x) и s (x) представляют собой любые целые рациональные числа или выражения, а знак неравенства может отличаться. Чтобы решить это задание, нам нужно преобразовать его и получить равносильное равенство.

    Начнем с перенесения выражения из правой части в левую. Получим следующее:

    вида r (x) − s (x) < 0 (≤ , > , ≥)

    Мы знаем, что r (x) − s (x) будет целым значением, а любое целое выражение допустимо преобразовать в многочлен. Преобразуем r (x) − s (x) в h (x) . Это выражение будет тождественно равным многочленом. Учитывая, что у r (x) − s (x) и h (x) область допустимых значений x одинакова, мы можем перейти к неравенствам h (x) < 0 (≤ , > , ≥) , которое будет равносильно исходному.

    Зачастую такого простого преобразования будет достаточно для решения неравенства, поскольку в итоге может получиться линейное или квадратное неравенство, значение которого вычислить несложно. Разберем такие задачи.

    Пример 1

    Условие: решите целое рациональное неравенство x · (x + 3) + 2 · x ≤ (x + 1) 2 + 1 .

    Решение

    Начнем с переноса выражения из правой части в левую с противоположным знаком.

    x · (x + 3) + 2 · x − (x + 1) 2 − 1 ≤ 0

    Теперь, когда мы выполнили все действия с многочленами слева, можно переходить к линейному неравенству 3 · x − 2 ≤ 0 , равносильному тому, что было дано в условии. Решить его несложно:

    3 · x ≤ 2 x ≤ 2 3

    Ответ: x ≤ 2 3 .

    Пример 2

    Условие: найдите решение неравенства (x 2 + 1) 2 − 3 · x 2 > (x 2 − x) · (x 2 + x) .

    Решение

    Переносим выражение из левой части в правую и выполняем дальнейшие преобразования с помощью формул сокращенного умножения.

    (x 2 + 1) 2 − 3 · x 2 − (x 2 − x) · (x 2 + x) > 0 x 4 + 2 · x 2 + 1 − 3 · x 2 − x 4 + x 2 > 0 1 > 0

    В итоге наших преобразований мы получили неравенство, которое будет верным при любых значениях x , следовательно, решением исходного неравенства может быть любое действительное число.

    Ответ: любое действительно число.

    Пример 3

    Условие: решите неравенство x + 6 + 2 · x 3 − 2 · x · (x 2 + x − 5) > 0 .

    Решение

    Из правой части мы ничего переносить не будем, поскольку там 0 . Начнем сразу с преобразования левой части в многочлен:

    x + 6 + 2 · x 3 − 2 · x 3 − 2 · x 2 + 10 · x > 0 − 2 · x 2 + 11 · x + 6 > 0 .

    Мы вывели квадратное неравенство, равносильное исходному, которое легко решить несколькими методами. Применим графический способ.

    Начнем с вычисления корней квадратного трехчлена − 2 · x 2 + 11 · x + 6 :

    D = 11 2 - 4 · (- 2) · 6 = 169 x 1 = - 11 + 169 2 · - 2 , x 2 = - 11 - 169 2 · - 2 x 1 = - 0 , 5 , x 2 = 6

    Теперь на схеме отметим все необходимые нули. Поскольку старший коэффициент меньше нуля, ветви параболы на графике будут смотреть вниз.

    Нам будет нужна область параболы, расположенная над осью абсцисс, поскольку в неравенстве у нас стоит знак > . Нужный интервал равен (− 0 , 5 , 6) , следовательно, эта область значений и будет нужным нам решением.

    Ответ: (− 0 , 5 , 6) .

    Бывают и более сложные случаи, когда слева получается многочлен третьей или более высокой степени. Чтобы решить такое неравенство, рекомендуется использовать метод интервалов. Сначала мы вычисляем все корни многочлена h (x) , что чаще всего делается с помощью разложения многочлена на множители.

    Пример 4

    Условие: вычислите (x 2 + 2) · (x + 4) < 14 − 9 · x .

    Решение

    Начнем, как всегда, с переноса выражения в левую часть, после чего нужно будет выполнить раскрытие скобок и приведение подобных слагаемых.

    (x 2 + 2) · (x + 4) − 14 + 9 · x < 0 x 3 + 4 · x 2 + 2 · x + 8 − 14 + 9 · x < 0 x 3 + 4 · x 2 + 11 · x − 6 < 0

    В итоге преобразований у нас получилось равносильное исходному равенство, слева у которого стоит многочлен третьей степени. Применим метод интервалов для его решения.

    Сначала вычисляем корни многочлена, для чего нам надо решить кубическое уравнение x 3 + 4 · x 2 + 11 · x − 6 = 0 . Имеет ли оно рациональные корни? Они могут быть лишь в числе делителей свободного члена, т.е. среди чисел ± 1 , ± 2 , ± 3 , ± 6 . Подставим их по очереди в исходное уравнение и выясним, что числа 1 , 2 и 3 будут его корнями.

    Значит, многочлен x 3 + 4 · x 2 + 11 · x − 6 может быть описан в виде произведения (x − 1) · (x − 2) · (x − 3) , и неравенство x 3 + 4 · x 2 + 11 · x − 6 < 0 может быть представлено как (x − 1) · (x − 2) · (x − 3) < 0 . С неравенством такого вида нам потом будет легче определить знаки на промежутках.

    Далее выполняем оставшиеся шаги интервального метода: рисуем числовую прямую и точки на ней с координатами 1 , 2 , 3 . Они разбивают прямую на 4 промежутка, в которых нужно определить знаки. Заштрихуем промежутки с минусом, поскольку исходное неравенство имеет знак < .

    Нам осталось только записать готовый ответ: (− ∞ , 1) ∪ (2 , 3) .

    Ответ: (− ∞ , 1) ∪ (2 , 3) .

    В некоторых случаях выполнять переход от неравенства r (x) − s (x) < 0 (≤ , > , ≥) к h (x) < 0 (≤ , > , ≥) , где h (x) – многочлен в степени выше 2 , нецелесообразно. Это распространяется на те случаи, когда представить r (x) − s (x) как произведение линейных двучленов и квадратных трехчленов проще, чем разложить h (x) на отдельные множители. Разберем такую задачу.

    Пример 5

    Условие: найдите решение неравенства (x 2 − 2 · x − 1) · (x 2 − 19) ≥ 2 · x · (x 2 − 2 · x − 1) .

    Решение

    Данное неравенство относится к целым. Если мы перенесем выражение из правой части влево, раскроем скобки и выполним приведение слагаемых, то получим x 4 − 4 · x 3 − 16 · x 2 + 40 · x + 19 ≥ 0 .

    Решить такое неравенство непросто, поскольку придется искать корни многочлена четвертой степени. Оно не имеет ни одного рационального корня (так, 1 , − 1 , 19 или − 19 не подходят), а искать другие корни сложно. Значит, воспользоваться этим способом мы не можем.

    Но есть и другие способы решения. Если мы перенесем выражения из правой части исходного неравенства в левую, то сможем выполнить вынесение за скобки общего множителя x 2 − 2 · x − 1:

    (x 2 − 2 · x − 1) · (x 2 − 19) − 2 · x · (x 2 − 2 · x − 1) ≥ 0 (x 2 − 2 · x − 1) · (x 2 − 2 · x − 19) ≥ 0 .

    Мы получили неравенство, равносильное исходному, и его решение даст нам искомый ответ. Найдем нули выражения в левой части, для чего решим квадратные уравнения x 2 − 2 · x − 1 = 0 и x 2 − 2 · x − 19 = 0 . Их корни – 1 ± 2 , 1 ± 2 5 . Переходим к равенству x - 1 + 2 · x - 1 - 2 · x - 1 + 2 5 · x - 1 - 2 5 ≥ 0 , которое можно решить методом интервалов:

    Согласно рисунку, ответом будет - ∞ , 1 - 2 5 ∪ 1 - 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

    Ответ: - ∞ , 1 - 2 5 ∪ 1 - 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

    Добавим, что иногда нет возможности найти все корни многочлена h (x) , следовательно, мы не можем представить его в виде произведения линейных двучленов и квадратных трехчленов. Тогда решить неравенство вида h (x) < 0 (≤ , > , ≥) мы не можем, значит, решить исходное рациональное неравенство тоже нельзя.

    Допустим, надо решить дробно рационально неравенств вида r (x) < s (x) (≤ , > , ≥) , где r (x) и s (x) являются рациональными выражениями, x – переменной. Хотя бы одно из указанных выражений будет дробным. Алгоритм решения в этом случае будет таким:

    1. Определяем область допустимых значений переменной x .
    2. Переносим выражение из правой части неравенства налево, а получившееся выражение r (x) − s (x) представляем в виде дроби. При этом где p (x) и q (x) будут целыми выражениями, которые являются произведениями линейных двучленов, неразложимых квадратных трехчленов, а также степеней с натуральным показателем.
    3. Далее решаем полученное неравенство методом интервалов.
    4. Последним шагом является исключение точек, полученных в ходе решения, из области допустимых значений переменной x , которую мы определили в начале.

    Это и есть алгоритм решения дробно рационального неравенства. Большая часть его понятна, небольшие пояснения требуются только для п. 2 . Мы перенесли выражение из правой части налево и получили r (x) − s (x) < 0 (≤ , > , ≥) , а как потом привести его к виду p (x) q (x) < 0 (≤ , > , ≥) ?

    Сначала определим, всегда ли можно выполнить данное преобразование. Теоретически, такая возможность имеется всегда, поскольку в рациональную дробь можно преобразовать любое рациональное выражение. Здесь же у нас есть дробь с многочленами в числителе и знаменателе. Вспомним основную теорему алгебры и теорему Безу и определим, что любой многочлен n -ной степени, содержащий одну переменную, может быть преобразован в произведение линейных двучленов. Следовательно, в теории мы всегда можем преобразовать выражение таким образом.

    На практике разложение многочленов на множители зачастую оказывается довольно трудной задачей, особенно если степень выше 4 . Если мы не сможем выполнить разложение, то не сможем и решить данное неравенство, однако в рамках школьного курса такие проблемы обычно не изучаются.

    Далее нам надо решить, будет ли полученное неравенство p (x) q (x) < 0 (≤ , > , ≥) равносильным по отношению к r (x) − s (x) < 0 (≤ , > , ≥) и к исходному. Есть вероятность, что оно может оказаться и неравносильным.

    Равносильность неравенства будет обеспечена тогда, когда область допустимых значений p (x) q (x) совпадет с областью значений выражения r (x) − s (x) . Тогда последний пункт инструкции по решению дробно рациональных неравенств выполнять не нужно.

    Но область значений для p (x) q (x) может оказаться шире, чем у r (x) − s (x) , например, за счет сокращения дробей. Примером может быть переход от x · x - 1 3 x - 1 2 · x + 3 к x · x - 1 x + 3 . Либо это может происходить при приведении подобных слагаемых, например, здесь:

    x + 5 x - 2 2 · x - x + 5 x - 2 2 · x + 1 x + 3 к 1 x + 3

    Для таких случаев и добавлен последний шаг алгоритма. Выполнив его, вы избавитесь от посторонних значений переменной, которые возникают из-за расширения области допустимых значений. Возьмем несколько примеров, чтобы было более понятно, о чем идет речь.

    Пример 6

    Условие: найдите решения рационального равенства x x + 1 · x - 3 + 4 x - 3 2 ≥ - 3 · x x - 3 2 · x + 1 .

    Решение

    Действуем по алгоритму, указанному выше. Сначала определяем область допустимых значений. В данном случае она определяется системой неравенств x + 1 · x - 3 ≠ 0 x - 3 2 ≠ 0 x - 3 2 · (x + 1) ≠ 0 , решением которой будет множество (− ∞ , − 1) ∪ (− 1 , 3) ∪ (3 , + ∞) .

    x x + 1 · x - 3 + 4 (x - 3) 2 + 3 · x (x - 3) 2 · (x + 1) ≥ 0

    После этого нам нужно преобразовать его так, чтобы было удобно применить метод интервалов. Первым делом приводим алгебраические дроби к наименьшему общему знаменателю (x − 3) 2 · (x + 1) :

    x x + 1 · x - 3 + 4 (x - 3) 2 + 3 · x (x - 3) 2 · (x + 1) = = x · x - 3 + 4 · x + 1 + 3 · x x - 3 2 · x + 1 = x 2 + 4 · x + 4 (x - 3) 2 · (x + 1)

    Сворачиваем выражение в числителе, применяя формулу квадрата суммы:

    x 2 + 4 · x + 4 x - 3 2 · x + 1 = x + 2 2 x - 3 2 · x + 1

    Областью допустимых значений получившегося выражения является (− ∞ , − 1) ∪ (− 1 , 3) ∪ (3 , + ∞) . Мы видим, что она аналогична той, что была определена для исходного равенства. Заключаем, что неравенство x + 2 2 x - 3 2 · x + 1 ≥ 0 является равносильным исходному, значит, последний шаг алгоритма нам не нужен.

    Используем метод интервалов:

    Видим решение { − 2 } ∪ (− 1 , 3) ∪ (3 , + ∞) , которое и будет решением исходного рационального неравенства x x + 1 · x - 3 + 4 x - 3 2 ≥ - 3 · x (x - 3) 2 · (x + 1) .

    Ответ: { − 2 } ∪ (− 1 , 3) ∪ (3 , + ∞) .

    Пример 7

    Условие: вычислите решение x + 3 x - 1 - 3 x x + 2 + 2 x - 1 > 1 x + 1 + 2 · x + 2 x 2 - 1 .

    Решение

    Определяем область допустимых значений. В случае с этим неравенством она будет равна всем действительным числам, кроме − 2 , − 1 , 0 и 1 .

    Переносим выражения из правой части в левую:

    x + 3 x - 1 - 3 x x + 2 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 > 0

    x + 3 x - 1 - 3 x x + 2 = x + 3 - x - 3 x x + 2 = 0 x x + 2 = 0 x + 2 = 0

    Учитывая получившийся результат, запишем:

    x + 3 x - 1 - 3 x x + 2 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 0 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 2 x - 1 - 1 x + 1 - 2 · x + 2 (x + 1) · x - 1 = = - x - 1 (x + 1) · x - 1 = - x + 1 (x + 1) · x - 1 = - 1 x - 1

    Для выражения - 1 x - 1 областью допустимых значений будет множество всех действительных чисел, за исключением единицы. Мы видим, что область значений расширилась: в нее были добавлены − 2 , − 1 и 0 . Значит, нам нужно выполнить последний шаг алгоритма.

    Поскольку мы пришли к неравенству - 1 x - 1 > 0 , можем записать равносильное ему 1 x - 1 < 0 . С помощью метода интервалов вычислим решение и получим (− ∞ , 1) .

    Исключаем точки, которые не входят в область допустимых значений исходного равенства. Нам надо исключить из (− ∞ , 1) числа − 2 , − 1 и 0 . Таким образом, решением рационального неравенства x + 3 x - 1 - 3 x x + 2 + 2 x - 1 > 1 x + 1 + 2 · x + 2 x 2 - 1 будут значения (− ∞ , − 2) ∪ (− 2 , − 1) ∪ (− 1 , 0) ∪ (0 , 1) .

    Ответ: (− ∞ , − 2) ∪ (− 2 , − 1) ∪ (− 1 , 0) ∪ (0 , 1) .

    В заключение приведем еще один пример задачи, в котором окончательный ответ зависит от области допустимых значений.

    Пример 8

    Условие: найдите решение неравенства 5 + 3 x 2 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≥ 0 .

    Решение

    Область допустимых значений неравенства, заданного в условии, определяет система x 2 ≠ 0 x 2 - x + 1 ≠ 0 x - 1 ≠ 0 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≠ 0 .

    Решений у этой системы нет, поскольку

    x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 = = (x + 1) · x 2 - x + 1 x 2 - x + 1 - (x - 1) · x + 1 x - 1 = = x + 1 - (x + 1) = 0

    Значит, исходное равенство 5 + 3 x 2 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≥ 0 не имеет решения, поскольку нет таких значений переменной, при которой оно имело бы смысл.

    Ответ: решений нет.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter




© 2024
womanizers.ru - Журнал современной женщины