29.06.2019

Транспортная функция белков. Транспортные белки Как называется белок обеспечивающий транспорт кислорода кровью


Кислород в крови находится в рас­творенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода. Поскольку растворимость кислорода при 37 °С составляет 0.225 мл * л -1 * кПа -1 (0.03 мл-л -1 мм рт.ст. -1), то каждые 100 мл плазмы крови при напряжении кисло­рода 13.3 кПа (100 мм рг.ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в кро­ви и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин. Отсюда ясна важность другого механизма переноса кислорода путем его со­единения с гемоглобином.

Каждый грамм гемоглобина способен связать 1.39 мл кислорода и, следовательно, при содержании гемоглобина 150 г/л каждые 100 мл крови могут переносить 20.8 мл кислорода.

Показатели дыхательной функции крови

1. Кислородная емкость гемогло­бина. Величина, отражающая количество кислорода, которое может связаться с гемоглобином при его полном насыщении, называется кислородной емкостью гемогло­бин а .

2. Со­держание кислорода в крови. Другим показателем дыхательной функции крови является со­держание кислорода в крови, которое отражает истинное количество кислорода, как связанного с гемоглобином, так и физически рас­творенного в плазме.

3. Сте­пень насыщения гемоглобина кислородом . В 100 мл артериальной крови в норме содер­жится 19-20 мл кислорода, в таком же объеме венозной крови - 13-15 мл кислорода, при этом артерио-венозная разница составляет 5-6 мл. Отношение количества кислорода, связанного с гемоглоби­ном, к кислородной емкости последнего является показателем сте­пени насыщения гемоглобина кислородом. Насыщение гемоглобина артериальной крови кислородом у здоровых лиц составляет 96%.

Образование оксигемоглобина в легких и его восстановление в тканях находится в зависимости от парциального напряжения кис­лорода крови: при его повышении. Насыщение гемоглобина кисло­родом возрастает, при понижении - уменьшается. Эта связь носит нелинейный характер и выражается кривой диссоциации оксигемо­глобина, имеющей S-образную форму.

Оксигенированной артериальной крови соответствует плато кривой диссоциации, а десатурированной крови в тканях - круто снижающаяся ее часть. Пологий подъем кривой в верхнем ее участке (зона высокого на­пряжения О 2) свидетельствует, что достаточно полное насыщение гемоглобина артериальной крови кислородом обеспечивается даже при уменьшении напряжения О 2 до 9.3 кПа (70 мм рт.ст.). По­нижение напряжения О, с 13.3 кПа на 2.0-2.7 кПа (со 100 на 15-20 мм рт.ст.) практически не отражается на насыщении гемоглобина кислородом (НЬО 2 снижается при этом на 2-3%). При более низких значениях напряжения О 2 оксигемоглобин диссоциирует значительно легче (зона крутого падения кривой). Так, при снижении напряже­ния О 2 с 8.0 до 5.3 кПа (с 60 до 40 мм рт.ст.) насыщение гемог­лобина кислородом уменьшается приблизительно на 15%.

Положение кривой диссоциации оксигемоглобина количественно принято выражать парциальным напряжением кислорода, при котором насыщение гемоглобина составляет 50% (Р 50). Нормальная величина Р 50 при температуре 37°С и рН 7.40 - около 3.53 кПа (26.5 мм рт.ст.).

Кривая диссоциации оксигемоглобина при определенных условиях может смещаться в ту или иную сторону, сохраняя S- образную форму, под влиянием изменения рН, напряжения СО 2 температуры тела, содержания в эритроцитах 2,3-дяфосфоглицерата (2,3-ДФГ), от которых зависит способность гемоглобина связывать кислород. В работающих мышцах в результате интенсивного метаболизма повы­шается образование СО 2 и молочной кислоты, а также возрастает теплопродукция. Все эти факторы понижают сродство гемоглобина к кислороду. Кривая диссоциации при этом сдвигается вправо (рис.8.7), что приводит к более легкому освобождению кислорода из оксиге­моглобина, и возможность потребления тканями кислорода увеличи­вается. При уменьшении температуры, 2,3-ДФГ, снижении напря­жения СО, и увеличении рН кривая диссоциации сдвигается влево, сродство гемоглобина к кислороду возрастает, в результате чего доставка кислорода к тканям уменьшается.

Гемоглобин F , син. фетальный Г. - нормальный гемоглобин плода человека, отличающийся от гемоглобина А строением одной пары полипептидных цепей, большим сродством к кислороду и большей стабильностью; увеличение содержания гемоглобина F наблюдается при некоторых формах бетта-талассемии, остром лейкозе, апластической анемии и других болезнях.

Гемоглобинурия – появление свободного гемоглобина в моче, обусловленное повышенным внутрисосудистым разрушением эритроцитов.

Гемоглобинурия маршевая – пароксизмальная гемоглобинурия, наблюдающаяся после длительной интенсивной физической работы.

Гемолиз - процесс разрушения эритроцитов, при котором гемоглобин выходит из них в плазму. Кровь после Г. эритроцитов представляет собой прозрачную жидкость красного цвета (лаковая кровь).

Гемолизины – антитела, приводящие к гемолизу эритроцитов в присутствии комплемента.

Гемометр – прибор, предназначенный для определения концентрации гемоглобина крови колориметрическим способом.

Гемопоэтины – образующиеся в организме вещества, стимулирующие кроветворение (гемопоэз).

Геморезистография – графический метод регистрации устойчивости эритроцитов к изменениям осмотического давления.

Гемостаз - сложная система приспособительных механизмов, обеспечивающая текучесть крови в сосудах и свертывание крови при нарушении их целостности.

Гемофилия (-и) – наследственные заболевания, проявляющиеся длительными кровотечениями из поврежденных сосудов, склонностью к образованию гематом при травмах и характеризующиеся нарушением первой фазы свертывания крови вследствие дефицита VIII или IX факторов.

Гепарин – естественный противосвертывающий фактор крови, синтезируемый тучными клетками, тормозящий превращение протромбина в тромбин, фибриногена в фибрин и уменьшающий активность тромбина; препараты Г. используются в качестве лекарственных средств.

Гиперадреналинемия - избыточное содержание адреналина в крови.

Гипергликемия – повышенное содержание глюкозы в крови. Г. алиментарная – Г. возникающая после приема пищи, богатой углеводами.

Гиперкапния – состояние организма, вызванное повышением парциального давления углекислого газа в крови.

Гипероксемия – повышенное содержание кислорода в крови.

Гипертонический раствор – раствор, осмотическое давление которого выше осмотического давление плазмы крови.

Гиперхромазия (син. Гиперхромия) – усиленная окраска эритроцитов в связи с увеличенным содержанием в них гемоглобина; характеризуется увеличением цветного показателя (выше 1,05).

Гипогликемия – пониженное содержание глюкозы в крови.

Гипокапния – пониженное парциальное давление углекислого газа в крови.

Гипоксемия - снижение содержания и парциального давления кислорода в крови.

Гипопротеинемия – пониженное содержание общего белка в сыворотке крови.

Гипотонический раствор – раствор осмотическое давление которого ниже нормального осмотического давления плазмы крови.

Гирудин - антикоагулянт прямого действия, выделенный из тканей некоторых кровососущих животных, в том числе медицинских пиявок.

Глобин – белковая часть молекулы гемоглобина.

Горяева счетная камера –прибор для подсчета клеток крови, изготовленный по типу счетной камеры Бюркера и снабженный сеткой Горяева.

Гранулоциты – лейкоциты, в цитоплазме которых при окрашивании выявляется зернистость, но не азурофильная, которая в небольшом количестве присутствует а агранулоцитах – моноцитах и лимфоцитах.

Группы крови – совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий.

Давление онкотическое - часть осмотического давления, создаваемая высокомолекулярными соединениями в растворах. В биологических системах (плазма крови) давление онкотическое создается главным образом белкам (например, альбумины).

Давление осмотическое - давление производимое веществом в растворе. Возникает в результате тенденции к снижению концентрации раствора при соприкосновении с чистым растворителем за счет встречной диффузии молекул растворенного вещества и растворителя. Давление осмотическое определяют как избыточное гидростатическое давление на раствор, отделенный от растворителя полупроницаемой мембраной, достаточное для прекращения диффузии растворителя через мембрану.

Дезоксигемоглобин – форма гемоглобина, в которой он способен присоединять кислород или другие соединения, например воду, окись углерода.

Депо крови – орган или ткань, обладающие способностью задерживать в своих сосудах часть объема циркулирующей крови, которое при необходимости может быть использовано организмом. Основную роль кровяного депо выполняют селезенка, печень, сосуды кишечника, легкие, кожа, поскольку сосуды этих органов способны задерживать большое количество дополнительной резервной крови, используемой в случае острой необходимости другими органами и тканями.

Изотонический раствор – раствор, осмотическое давление которого равно осмотическому давлению плазмы крови.

Иммунитет – способность организма защищаться от генетически чужеродных тел и веществ.

Карбоксигемоглобин - соединение гемоглобина с окисью углерода, образующееся при отравлении ею и не способное участвовать в переносе кислорода.

Кислородная емкость крови – количество кислорода, которое может быть связано кровью до полного насыщения гемоглобина. Кислородная емкость крови в норме составляет 0,19 мл кислорода в 1 мл крови (при содержании гемоглобина 8,7 ммоль /л или 14 гр%) при температуре 0 С и барометрическом давлении 760 мм. рт. ст (101,3 кПа).Кислородная емкость крови определяется содержанием гемоглобина; так, 1 г гемоглобина связывает 1,36-1,34 мл кислорода, а в 1 мл плазме растворено 0,003 мл кислорода.

Коагулология - раздел гематологии, посвященный изучению биохимии, физиологии и патологии системы свертывания крови.

Костный мозг – содержимое костных полостей; различают «красный» костный мозг, где происходит процесс кроветворения (у взрослых он располагается в губчатом веществе костей – в эпифизе трубчатых костей и плоских костях; у новорожденных он занимает и диафиз) и жировой костный мозг (диафизов трубчатых костей), который превращается в кроветворный лишь при резком усилении гемопоэза.

Кристмаса фактор (IX фактор) – профермент, синтезируемый в печени (витамин К-зависимый синтез) вместе с фактором 3 пластинок, активным VIII и Са ++ активирует фактор Х во внутренней системе.

Лейкопения – содержание лейкоцитов в периферической крови ниже 4000 в 1 мкл

Лейкопоэз – процесс образования лейкоцитов

Лейкоцит – форменный элемент крови, имеющий ядро, не образующий гемоглобин

Лейкоцитарная формула – количественное (процентное) соотношение отдельных видов лейкоцитов в периферической крови

Лейкоцитоз – повышенное содержание лейкоцитов в единице объема периферической крови

Лейкоцитоз пищевой – нормальная физиологическая реакция иммунной системы организма на поступление пищи, заключающаяся в перераспределении лейкоцитов и предупреждающая проникновение пищевого материала во внутреннюю среду организма.

Лимфоцит – лейкоцит (агранулоцит) небольшого размера (6-13 мкм) с компактным, округлым глыбчатой структуры ядром с небольшими просветлениями и базофильной цитоплазмой; принимает участи в иммунологических реакциях. Лимфоциты подразделяются на три основных группы - Т- , В- и 0 лимфоциты.

Т - лимфоциты подразделяются на Т-киллеры, осуществляющие лизис клеток-мишеней, Т-Т хелперы, усиливающие клеточный иммунитет, Т-В хелперы, облегчающие течение гуморального иммунитета, Т-амплифайеры – усиливают функции Т-и В- лимфоцитов, Т-Т - супрессоры, подавляют клеточный иммунитет, Т-В- супрессоры, угнетают гуморальный иммунитет, Т-дифференцирующие, регулируют функцию стволовых клеток, Т- контр-супрессоры, препятствуют действию Т-супрессоров, Т-клетки иммунной памяти

В-лимфоциты переходят в плазматические клетки, которые вырабатывают антитела, обеспечивая гуморальный иммунитет и В-клетки иммунной памяти

0-лимфоциты – предшественники Т-и В-клеток, естественные киллеры.

Макрофаг (и) – клетки опорно-трофического происхождения, размерами от 20 до 60. мкм с небольшим округлым ядром (иногда двумя- тремя ядрами) и цитоплазмой, содержащей, включения в виде фрагментов, поврежденных ядер, липидов, бактерий, реже целых клеток. Макрофаги обладают выраженной фагоцитарной активностью, секретируют лизоцим, интерферон, нейтральные протеазы, кислые гидролазы, компоненты системы комплемента, ингибиторы ферментов, (ингибитор плазминогена), биоактивные липиды (метаболиты арахидонта, простагландин Е2, тромбоксан), факторы, активирующие тромбоциты, факторы, стимулрующие синтез белка в других клетках, эндогенные пирогены, интерлейкин I, факторы, ингибирующие размножение.

Метгемоглобин – производное гемоглобина, лишенное способности переносить кислород в связи с тем, что железо гема находится в трехвалентной форме, образуется в повышенном количестве при некоторых гемоглобинопатиях, и отравлениях нитратами, сульфонамидами.

Микрофаг – нейтрофильный лейкоцит.

Миоглобин – пигмент красного цвета, содержащийся в клетках поперечно-полосатой мускулатуры и в кардиомиоцитах; состоит из белковой части - глобина и небелковой группы – гема, идентичного гему гемоглобина; выполняет функции переносчика кислорода и обеспечивает депонирование кислорода в тканях.

Моноцит – зрелый лейкоцит диаметром 12-20 мкм с бобовидным полиморфным ядром, имеющим неравномерную, петлистую хроматиновую сеть ядра. Цитоплазма равномерна, имеет черты ячеистого строения, иногда содержит скудную азурофильную зернистость.Это чрезвычайно активный фагоцит, распознает антиген и переводит его в иммуногенную форму, образует монокины, действующие на лимфоциты, принимает участие в формировании противоинфекционного и противопухолевого иммунитета, синтезирует отдельные компоненты системы комплемента и факторы, принимающие участие в гемостазе.

Нейтрофил - обладает фагоцитарной активностью, содержит ферменты, разрушающие бактерии, способен адсорбировать антитела и переносить их к очагу воспаления, участвует в обеспечении иммунитета, вещества, выделяемые им, усиливают митотическую активность клеток, ускоряют процессы репарации, стимулируют гемопоэз и растворение фибринового сгустка.

Нормоцит – эритрокариоциты разных стадий созревания.

Оксигемоглобин – соединение гемоглобина с кислородом, обеспечивающее перенос последнего кровью от легких к тканям.

Оксигемометрия – измерение насыщения гемоглобина крови кислородом. Осуществляется фотометрическим методом: прямым (кровавым) способом (в проточных кюветах) и непрямым бескровным (с помощью ушных, лобных, пальцевых датчиков).

В норме при дыхании воздухом насыщение кислородом гемоглобина крови составляет около 97 %

Осмос – односторонняя диффузия растворителя через полупроницаемую мембрану, отделяющую раствор от чистого растворителя или раствора более низкой концентрации. Осмос всегда направлен от чистого растворителя к раствору или от разбавленного (осмотического) раствора к концентрированному.

Осмотическая стойкость – способность клеток выдерживать (не разрушаясь) снижение осмотического давления среды.

Панцитопения – уменьшение в периферической крови элементов всех трех ростков кроветворения – эритроцитов, лейкоцитов, тромбоцитов.

Плазма - жидкая часть крови, остающаяся после удаления ее форменных элементов.

Плазменный предшественник тромбопластина (фактор Розенталя) вместе с Са ++ активирует IX фактор.

Плазмин – протеолитический фермент, лизирующий нити нерастворимого фибрина, превращая его в растворимые продукты.

Пойкилоцитоз – наличие в периферической крови эритроцитов разной необычной формы (круглые сфероциты, серповидные эритроциты).

Полицитемия, (син. эритремия) – повышение содержания эритроцитов в кровеносном русле, увеличение объема циркулирующих эритроцитов.

Проакцелерин - образующийся в печени растворимый бетта-глобулин, связывающийся с мембраной тромбоцитов; активная форма (акцелерин) служит компонентом активатора протромбина.

Проконвертин – синтезируемый в печени профермент в активной форме вместе с III и Cа активирует фактор X во внешней системе.

Протеинемия – нормальное содержание в крови протеинов (альбуминов и глобулинов).

Противосвертывающая система крови - обязательная составная часть системы свертывания крови, препятствующая образованию кровяного сгустка или растворяющая его.

Протромбин - образующийся в печени профермент плазмы крови, являющийся предшественником тромбина.

Протромбиновое время (син. Квика время) – метод исследования внешнего механизма формирования тромбиновой активности, в котором участвуют плазменные факторы VII, X, V и II; определяется продолжительностью (в секундах) образования сгустка в исследуемой плазме крови в присутствии тромбопластина и солей кальция

Резус-фактор – система из шести изоантигенов эритроцитов человека, обусловливающая их фенотипические различия.

Ретикулоцит – незрелый полихроматофильный эритроцит, содержащий базофильную субстанцию, которая выпадает в виде гранул и нитей при специальной прижизненной окраске, с частности бриллиантовым, крезиловым синим.

Ретракция сгустка – сокращение сгустка крови или плазмы, сопровождающееся выделением сыворотки (заключительный этап формирования тромба).

Рингера раствор изотонический по отношению к крови водный раствор, применяемый, например, как кровезаменитель в экспериментах на хладнокровных животных. Состав на 1 л воды NaCl - 6г, KCl – 0,01г, Ca Cl 2 – 0,02г, NaHCO 3 – 0,01г.

Рингера-Локка раствор – изотонический по отношению к крови водный раствор, применяемый, например, как кровезаменитель в экспериментах на теплокровных животных. Состав на 1 л воды NaCl - 9г, KCl – 0,3 г, Ca Cl 2 – 0,2г, NaHCO 3 – 0,2 , глюкоза – 10 г.

Свертывание крови – механизм, обеспечивающий образование кровяного сгустка.

Свертывающая система крови – сложная система, обеспечивающая остановку кровотечения путем формирования фибринных тромбов, поддержание целости кровеносных сосудов и жидкого состояния крови.

Сгусток кровяной – продукт свертывания крови, представляющий собой эластичное с гладкой поверхностью образование темнокрасного цвета; состоит из нитей фибрина и клеточных элементов крови.

Скорость оседания эритроцитов – показатель, отражающий изменение физико-химических свойств крови и измеряемый величиной столба плазмы, освобождающейся от эриторцитов при их оседании из цитратной смеси в специальной пипетке (как правило за 1 час)

Стюарта-Прауэра фактор (Х фактор) - профермент, синтезируемый в печени (витамин К-зависимый синтез) – профермент, служит компонентом активтора протромбина.

Сыворотка крови – жидкость, отделяющаяся от сгустка крови после его ретракции.

Тромбин – протеолитический фермент, образующийся в крови из протромбина; превращает растворимый фибриноген в нерастворимый фибрин.

Тромбопения (тромбоцитопения) – пониженное (менее 15010 9 /л) содержание тромбоцитов в периферической крови.

Тромбопластин тканевой– фосфолипопротеид, содержащийся в тканях организма и участвующий в процессе свертывания крови в качестве катализатора превращения протромбина в тромбин.

Тромбопластин кровяной – фосфолипид, синтезируемый в тромбоцитах, участвующий в превращении протомбина в тромбин.

Тромбопоэтины – вещества стимулирующие тромбоцитопоэз.

Тромбоцит – участвующий в свертывании крови форменный элемент, необходимый для поддержания целостности сосудистой стенки, обладает фагоцитарной активностью.

Тромбоцитопоэз – процесс образования тромбоцитов.

Хагемена фактор (XII) - контактчувствительный профермент, активируется калликреином.

Фагоцит - общее название клеток организма, способных захватывать и переваривать разрушенные клетки, инородные частицы.

Фагоцитоз – процесс активного захватывания и поглощения микроорганизмов, разрушенных клеток и инородных частиц одноклеточными организмами или фагоцитами.

Фибрин – нерастворимый в воде белок, образующийся из фактора I (фибриногена) под действием на него тромбина в процессе свертывания крови.

Фибриноген –(син. фактор I) образующийся в клетках печени белок плазмы крови, превращающийся в фибрин под действием тромбина.

Фибрин-стабилизирующий фактор – профермент, вызывает переплетение нитей фибрина

Физиологический раствор – общее название изотонических водных растворов, близких к сыворотке крови не только по осмотическому давлению но и активной реакции среды и буферным свойствам.

Фитцджеральда фактор – белок, способствующий контактной активации факторов XII и XI

Флетчера фактор (прекалликреин) профермент активируется активным XI, калликреин способствует активации факторов XII и XI

Цветовой показатель – индекс, отражающий отношение уровня гемоглобина к количеству эритроцитов в 1 мкл крови

Щелочной резерв крови – показатель функциональных возможностей буферной системы крови; представляет собой количество двуокиси углерода (в мл), которое может быть связано 100 мл плазмы крови, предварительно приведенной в равновесие с газовой средой, в которой парциальное давление двуокиси углерода составляет 40 мм рт. ст..

Эозинофил – лейкоцит, в цитоплазме которого при окрашивании выявляется зернистость, обладает фагоцитарной активностью, захватывает гистамин и разрушает его с помощью гистаминазы, разрушает токсины белкового происхождения, чужеродные белки и иммунные комплексы, осуществляет цитотоксический эффект в борьбе с гельминтами, их яйцами и личинками, фагоцитирует и инактивирует продукты, выделяемые базофилами, содержит катионные белки, которые активируют компоненты калликреин-кининовой системы, влияют на свертывание крови.

Эозинофилия – увеличение числа эозинофилов в периферической крови.

Эритрон – система красной крови, включающая периферическую кровь, органы эритропоэза и эритроциторазрушения.

Эритропоэз – процесс образования эритроцитов в организме

Эритроцит – безъядерный форменный элемент крови, содержащий гемоглобин, выполняет транспортную (дыхательную), защитную и регуляторную функции.

Красный пигмент гемоглобин (Нb) состоит из белковой части (глобина) и собственно пигмента (гема). Молекулы составляют четыре белковые субъединицы, каждая из которых присоединяет гем-группу с двухвалентным атомом железа, находящимся в ее центре. В легких каждый атом железа присоединяет одну молекулу кислорода. Кислород переносится в ткани, где он отделяется. Присоединение О 2 называется оксигенацией (насыщением кислородом), а его отсоединение - дезоксигенацией.

Транспорт СО 2

Около 10% углекислого газа (СО 2), конечного продукта окислительного метаболизма в клетках тканей, переносится кровью физически растворенным п 90% — в химически связанной форме. Большая часть углекислого газа сначала диффундирует из клеток тканей в плазму, а оттуда в эритроциты. Там молекулы СО 2 химически связываются и превращаются с помощью ферментов в намного более растворимые бикарбонат-ионы (НСО 3 -), которые переносятся в плазме крови. Образование СO 2 из НСО 3 - значительно ускоряется с помощью фермента карбоангидразы, присутствующего в эритроцитах.

Большая часть (около 50-60%) образованных бикарбонат-ионов поступает из эритроцитов обратно в плазму в обмен на хлорид-ионы. Они переносятся в легкие и выделяются в процессе выдоха после превращения в СO 2 . Оба процесса — образование НСО 3 - и освобождение СO 2 , соответственно связаны с оксигенацией и дезоксигенацией гемоглобина. Дезоксигемоглобин — заметно более сильное основание, чем оксигемоглобин, и может присоединить больше ионов Н + (буферная функция гемоглобина), таким образом способствуя образованию НСО 3 - в капиллярах тканей. В капиллярах легких НСО 3 - опять проходит из плазмы крови в эритроциты, соединяется с Н + -ионами и превращается опять в СO 2 . Этот процесс подтверждается тем фактом, что окисленная кровь выделяет больше протонов Н + . Намного меньшая доля СО 2 (около 5-10%) связана непосредственно с гемоглобином и переносится как карбаминогемоглобин.

Гемоглобин и угарный газ

Оксид углерода (угарный газ, СО) является бесцветным газом без запаха, который образуется во время неполного сгорания и, как кислород, может обратимо связываться с гемоглобином. Однако сродство угарного газа к гемоглобину заметно больше, чем у кислорода. Таким образом, даже когда содержание СО во вдыхаемом воздухе составляет 0,3%, 80% гемоглобина связывается с угарным газом (НbСО). Так как угарный газ в 200-300 раз медленней, чем кислород, освобождается от связи с гемоглобином, его токсическое действие определяется тем, что гемоглобин больше не может переносить кислород. У тяжелых курильщиков, например, 5-10% гемоглобина присутствует как НbСО, в то время как при его содержании в 20% появляются симптомы острого отравления (головная боль, головокружение, тошнота), а 65% могут быть смертельным.

Часто для оценки гемопоэза или для распознавания различных форм анемии определяют среднее содержание гемоглобина в эритроците (СГЭ). Оно вычисляется по формуле:

Значение среднего содержания гемоглобина в эритроците лежит между 38 и 36 пикограммами (пг) (1 пг = 10ˉ¹² г). Эритроциты с нормальным СГЭ называются нормохромными (ортохромными). Если СГЭ низкое (например, из-за постоянной потери крови или дефицита железа), эритроциты называются гипохромными; если СГЭ высокое (например, при пернициозной анемии благодаря дефициту витамина В 12), они называются гиперхромными.

Формы анемии

Анемия определяется как дефицит (снижение количества) эритроцитов или сниженное содержание гемоглобина в крови. Диагноз анемии обычно ставится по содержанию гемоглобина, нижняя граница нормы достигает 140 г/л у мужчин и 120 г/л у женщин. Почти при всех формах анемии надежным симптомом заболевания является бледный цвет кожи и слизистых оболочек. Часто во время физических нагрузок заметно увеличивается сердечный ритм (увеличивая скорость кровообращения), а уменьшение кислорода в тканях приводит к одышке. Кроме того, встречается головокружение и легкая утомляемость.

Кроме железодефицитной анемии и хронической потери крови, например, из-за кровоточащих язв или опухолей в желудочно-кишечном тракте (гипохромные анемии), анемия может возникать при дефиците витамина В 12 . фолиевой кислоты или эритропоэтина. Витамин В 12 и фолиевая кислота участвуют в синтезе ДНК в незрелых клетках костного мозга и, таким образом, заметно влияют на деление и созревание эритроцитов (эритропоэз). При их нехватке образуется меньше эритроцитов, но они заметно увеличены из-за повышенного содержания гемоглобина (макроциты (мегалоциты), предшественники: мегалобласты), поэтому содержание гемоглобина в крови практически не изменяется (гиперхромная, мегалобластическая, макроцитарная анемия).

Дефицит витамина В 12 нередко возникает из-за нарушения всасывания витамина в кишечнике, реже — вследствие недостаточного приема с пищей. Эта так называемая пернициозная анемия наиболее часто является результатом хронического воспаления в слизистой кишечника с уменьшением образования желудочного сока.

Витамин В 12 всасывается в кишечнике только в связанном виде с фактором, находящимся в желудочном соке «внутренним фактором (Кастла)», который защищает его от разрушения пищеварительным соком в желудке. Так как печень может запасать большое количество витамина В 12 , то перед тем, как ухудшение всасывания в кишечнике повлияет на образование эритроцитов, может пройти 2-5 лет. Как и в случае дефицита витамина В 12 , дефицит фолиевой кислоты, другого витамина группы В, приводит к нарушению эритропоэза в костном мозге.

Есть две другие причины анемии. Одна из них — разрушение костного мозга (аплазия костного мозга) радиоактивным излучением (например, после аварии на атомной электростанции) или в результате токсичных реакций на лекарства (например, цитостатики) (апластическая анемия). Другая причина — это уменьшение продолжительности жизни эритроцитов в результате их разрушения или увеличенного распада (гемолитическая анемия). При сильной форме гемолитической анемии (например, следующей за неудачным переливанием крови), кроме бледности может наблюдаться изменение цвета кожи и слизистых оболочек на желтоватый. Эта желтуха (гемолитическая желтуха) вызвана увеличивающимся разрушением гемоглобина до билирубина (желтого желчного пигмента) в печени. Последнее приводит к увеличению уровня билирубина в плазме и его отложению в тканях.

Примером анемии, возникающей в результате наследственного нарушения синтеза гемоглобина, клинически проявляющейся как гемолитическая, служит серповидноклеточная анемия. При этой болезни, которая практически встречается только у представителей негроидных популяций, имеется молекулярное нарушение, приводящее к замене нормального гемоглобина на другую форму гемоглобина (HbS). В HbS аминокислота валин заменена на глутаминовую кислоту. Эритроцит, содержащий такой неправильный гемоглобин, в дезоксигенированном состоянии принимает форму серпа. Серповидные эритроциты более жесткие и плохо проходят через капилляры.

Наследственное нарушение у гомозигот (доля HbS в суммарном гемоглобине 70-99%) приводит к закупорке небольших сосудов и, таким образом, к постоянному повреждению органов. Пораженные этой болезнью люди обычно достигают зрелости только при интенсивном лечении (например, частичной замене крови, приеме анальгетиков, избегании гипоксии (кислородного голодания) и иногда — пересадке костного мозга). В некоторых регионах тропической Африки с высоким процентом малярии 40% популяции являются гетерозиготными носителями данного гена (когда содержание HbS менее 50%), у них таких симптомов не обнаруживается. Измененный ген обусловливает устойчивость к малярийной инфекции (селективное преимущество).

Регуляция образования эритроцитов

Образование эритроцитов регулируется гормоном почек эритропоэтином. Организм обладает простой, но очень эффективной системой регуляции для поддержания содержания кислорода и вместе с тем количества эритроцитов относительно постоянным. Если содержание кислорода в крови падает ниже определенного уровня, например, после большой потери крови или во время пребывания на больших высотах, постоянно стимулируется образование эритропоэтина. В результате усиливается образование эритроцитов в костном мозге, что увеличивает способность крови к переносу кислорода. Когда дефицит кислорода преодолевается увеличением числа эритроцитов, образование эритропоэтина опять уменьшается. Пациенты, нуждающиеся в диализе (искусственном очищении крови от продуктов обмена веществ), с нарушением функционирования почек (например, с хронической почечной недостаточностью) часто испытывают явный дефицит эритропоэтина и поэтому почти всегда страдают от сопутствующей анемии.

text_fields

text_fields

arrow_upward

Количество кислорода, поступающего в альвеолярное пространство из вдыхаемого воздуха в единицу времени в стационарных условиях дыхания, равно количеству кислорода, переходящего за это время из альвеол в кровь легочных капилляров . Именно это обеспечивает постоянство концентрации (и парциального давления) кислорода в альвеолярном пространстве. Эта основная закономерность легочного газообмена характерна и для углекислого газа: количество этого газа, поступающего в альвеолы из смешанной венозной крови, протекаю­щей по легочным капиллярам, равно количеству углекислого газа, удаляющегося из альвеолярного пространства наружу с выдыхаемым воздухом.

У человека в покое разность между содержанием кислорода в артериальной и смешанной венозной крови равна 45-55 мл О 2 на 1 л крови, а разность между содержанием углекислого газа в ве­нозной и артериальной крови составляет 40- 50 мл СО 2 на 1 л крови. Это значит, что в каждый литр крови, протекающей по легочным капиллярам, поступает из альвеолярного воздуха примерно 50 мл О 2 , а из крови в альвеолы - 45 л СО 2 . Концентрация О 2 и СО 2 в альвеолярном воздухе остается при этом практически посто­янной, благодаря вентиляции альвеол.

Обмен газов между альвеолярным воздухом и кровью

text_fields

text_fields

arrow_upward

Альвеоляр­ный воздух и кровь легочных капилляров разделяет так называемая альвеолярно-капиллярная мембрана, толщина которой варьирует от 0.3 до 2.0 мкм. Основу альвеолярно-капиллярной мембраны составляет альвеолярный эпителий и капиллярный эндотелий, каждый из которых расположен на собственной базальной мембране и образует непрерыв­ную выстилку, соответственно, альвеолярной и внутрисосудистой по­верхности. Между эпителиальной и эндотелиальной базальными мем­бранами находится интерстиций. В отдельных участках базальные мембраны практически прилегают друг к другу (рис.8.6).

Рис. 8.6. Альвеолярно-капиллярная мембрана (схема)

Непрерывные компоненты аэрогематического барьера: оболочка клеток (РМ) и базальная мембрана (ВМ). Прерывистые компонен­ты: альвеолярные макрофаги (Р), пузырьки и вакуоли (V), митохондрии (М), эндоплазматический ретикулум (ER), ядра (N), пластинчатый комплекс (G), коллагеновые (С) и эластические (EL) волокна соединительной ткани.

Сурфактант

text_fields

text_fields

arrow_upward

Обмен респираторных газов осуществляется через совокупность субмикроскопических структур, содержащих гемоглобин эритроцитов, плазму крови, капиллярный эндотелий и его две плазматические мембраны, сложный по составу соединительнотканный слой, альве­олярный эпителий с двумя плазматическими мембранами, наконец, внутренюю выстилку альвеол - сурфактант (поверхностно-актив­ное вещество). Последний имеет толщину около 50 нм, представляет собой комплекс фосфолипидов, белков и полисахаридов и постоянно вырабатывается клетками альвеолярного эпителия, подвергаясь разрушению с периодом полураспада 12-16 часов. Наслоение сурфактанта на эпителиальную выстилку альвеолы создает дополнительную к альвеолярно-капиллярной мембране диффузионную среду, которую газы преодолевают при их массопереносе. За счет сурфактанта уд­линяется расстояние для диффузии газов, что приводит к неболь­шому снижению концентрационного градиента на альвеолярно-ка­пиллярной мембране. Однако, без сурфактанта дыхание вообще было 6ы невозможно, так как стенки альвеолы слиплись бы под действи­ем значительного поверхностного натяжения, присущего альвеоляр­ному эпителию.

Сурфактант снижает поверхностное натяжение аль­веолярных стенок до близких к нулевым величинам и тем самым :

а) создает возможность расправления легкого при первом вдохе но­ворожденного,
б) препятствует развитию ателектазов при выдохе,
в) обеспечивает до 2/3 эластического сопротивления ткани легкого взрослого человека и стабильность структуры респираторной зоны,
г) регулирует скорость абсорбции кислорода по границе раздела фаз газ-жидкость и интенсивность испарения воды с альвеолярной по­верхности.

Сурфактант также очищает поверхность альвеол от по­павших с дыханием инородных частиц и обладает бактериостатической активностью.

Переход газов через альвеоло-капиллярную мембрану

text_fields

text_fields

arrow_upward

Переход газов через альвеоло-капиллярную мембрану происходит по законам диффузии, но при растворении газов в жидкости процесс диффузии резко замедляется. Углекислый газ, например, диффундирует в жидкости примерно в 13000 раз, а кислород - в 300000 раз медленнее, чем в газовой среде. Количество газа, проходящее через ле­гочную мембрану в единицу времени, т.е. скорость диффузии, прямо пропорциональна разнице его парциального давления по обе стороны мембраны и обратно пропорциональна сопротивлению диффузии. Пос­леднее определяется толщиной мембраны и величиной поверхности газообмена, коэффициентом диффузии газа, зависящим от его моле­кулярного веса и температуры, а также коэффициентом растворимости газа в биологических жидкостях мембраны.

Направление и интенсивность перехода кислорода из альвеоляр­ного воздуха в кровь легочных микрососудов, а углекислого газа - в обратном направлении определяет разница между парциальным давлением газа в альвеолярном воздухе и его напряжением (парци­альным давлением растворенного газа) в крови. Для кислорода гра­диент давления составляет около 60 мм рт.ст. (парциальное давле­ние в альвеолах 100 мм рт.ст., а напряжение в крови, поступающей в легкие, 40 мм рт.ст.), а для углекислого газа - примерно 6 мм рт.ст. (парциальное давление в альвеолах 40 мм рт.ст., напряжение в притекающей к легким крови 46 мм рт.ст.).

Сопротивление диффузии кислорода в легких создают альвеолярно-капиллярная мембрана, слой плазмы в капиллярах, мембрана эритроцита и слой его протоплазмы. Поэтому общее сопротивление диффузии кислорода в легких слагается из мембранного и внутри-капиллярного компонентов. Биофизической характеристикой прони­цаемости аэрогематического барьера легких для респираторных газов является так называемая диффузионная способность легких. Это ко­личество мл газа, проходящее через легочную мембрану в 1 минуту при разнице парциального давления газа по обе стороны мембраны 1 мм рт.ст. У здорового человека в покое диффузионная способ­ность легких для кислорода равна 20-25 мл мин -1 мм рт.ст. -1 .

Величина диффузионной способности легких зависит от их объема и соответствующей ему площади поверхности газообмена. Этим в значительной мере объясняется тот факт, что величина диффузион­ной способности легких у мужчин обычно больше,чем у женщин, а также то, что величина диффузионной способности легких при за­держке дыхания на глубоком вдохе оказывается большей, чем в устойчивом состоянии на уровне функциональной остаточной ем­кости. За счет гравитационного перераспределения кровотока и объема крови в легочных капиллярах диффузионная способность легких в положении лежа больше, чем в положении сидя, а сидя - больше, чем в положении стоя. С возрастом диффузионная способ­ность легких снижается.

Транспорт кислорода кровью

text_fields

text_fields

arrow_upward

Кислород в крови находится в рас­творенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода. Поскольку растворимость кислорода при 37 °С составляет 0.225 мл * л -1 * кПа -1 (0.03 мл-л -1 мм рт.ст. -1), то каждые 100 мл плазмы крови при напряжении кисло­рода 13.3 кПа (100 мм рг.ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в кро­ви и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин. Отсюда ясна важность другого механизма переноса кислорода путем его со­ единения с гемоглобином.

Каждый грамм гемоглобина способен связать 1.39 мл кислорода и, следовательно, при содержании гемоглобина 150 г/л каждые 100 мл крови могут переносить 20.8 мл кислорода.

Показатели дыхательной функции крови

1. Кислородная емкость гемогло­ бина. Величина, отражающая количество кислорода, которое может связаться с гемоглобином при его полном насыщении, называется кислородной емкостью гемогло­ бина .

2. Со­ держание кислорода в крови. Другим показателем дыхательной функции крови является со­ держание кислорода в крови, которое отражает истинное количество кислорода, как связанного с гемоглобином, так и физически рас­творенного в плазме.

3. Сте­пень насыщения гемоглобина кислородом . В 100 мл артериальной крови в норме содер­жится 19-20 мл кислорода, в таком же объеме венозной крови - 13-15 мл кислорода, при этом артерио-венозная разница составляет 5-6 мл. Отношение количества кислорода, связанного с гемоглоби­ном, к кислородной емкости последнего является показателем сте­пени насыщения гемоглобина кислородом. Насыщение гемоглобина артериальной крови кислородом у здоровых лиц составляет 96%.

Образование оксигемоглобина в легких и его восстановление в тканях находится в зависимости от парциального напряжения кис­лорода крови: при его повышении. Насыщение гемоглобина кисло­родом возрастает, при понижении - уменьшается. Эта связь носит нелинейный характер и выражается кривой диссоциации оксигемо­глобина, имеющей S-образную форму (рис.8.7).

Рис.8.7. Кривая диссоциации оксигемоглобина.

Рис.8.7. Кривая диссоциации оксигемоглобина.
1 - при увеличении рН, или уменьшении температуры, или уменьшении 2,3-ДФГ;
2 - нормальная кривая при рН 7,4 и 37°С;
3 - при уменьшении рН или увеличении температуры или увеличении 2,3-ДФГ.

Оксигенированной артериальной крови соответствует плато кривой диссоциации, а десатурированной крови в тканях - круто снижающаяся ее часть. Пологий подъем кривой в верхнем ее участке (зона высокого на­пряжения О 2) свидетельствует, что достаточно полное насыщение гемоглобина артериальной крови кислородом обеспечивается даже при уменьшении напряжения О 2 до 9.3 кПа (70 мм рт.ст.). По­нижение напряжения О, с 13.3 кПа на 2.0-2.7 кПа (со 100 на 15-20 мм рт.ст.) практически не отражается на насыщении гемоглобина кислородом (НЬО 2 снижается при этом на 2-3%). При более низких значениях напряжения О 2 оксигемоглобин диссоциирует значительно легче (зона крутого падения кривой). Так, при снижении напряже­ния О 2 с 8.0 до 5.3 кПа (с 60 до 40 мм рт.ст.) насыщение гемог­лобина кислородом уменьшается приблизительно на 15%.

Положение кривой диссоциации оксигемоглобина количественно принято выражать парциальным напряжением кислорода, при котором насыщение гемоглобина составляет 50% (Р 50). Нормальная величина Р 50 при температуре 37°С и рН 7.40 - около 3.53 кПа (26.5 мм рт.ст.).

Кривая диссоциации оксигемоглобина при определенных условиях может смещаться в ту или иную сторону, сохраняя S- образную форму, под влиянием изменения рН, напряжения СО 2 температуры тела, содержания в эритроцитах 2,3-дяфосфоглицерата (2,3-ДФГ), от которых зависит способность гемоглобина связывать кислород. В работающих мышцах в результате интенсивного метаболизма повы­шается образование СО 2 и молочной кислоты, а также возрастает теплопродукция. Все эти факторы понижают сродство гемоглобина к кислороду. Кривая диссоциации при этом сдвигается вправо (рис.8.7), что приводит к более легкому освобождению кислорода из оксиге­моглобина, и возможность потребления тканями кислорода увеличи­вается. При уменьшении температуры, 2,3-ДФГ, снижении напря­жения СО, и увеличении рН кривая диссоциации сдвигается влево, сродство гемоглобина к кислороду возрастает, в результате чего доставка кислорода к тканям уменьшается.

Транспорт кровью углекислого газа

text_fields

text_fields

arrow_upward

Являясь конечным продук­том обмена веществ, СО 2 находится в организме в растворенном и связанном состоянии. Коэффициент растворимости СО 2 составляет 0.231 ммольл -1 * кПа -1 (0.0308 ммольл -1 * мм рт.ст -1 .), что почти в 20 раз выше, чем у кислорода. Однако, в растворенном виде перено­сится меньше 10% всего количества СО, транспортируемого кровью. В основном, СО, переносится в химически связанном состоянии, главным образом, в виде бикарбонатов, а также в соединении с белками (так называемые карбоминовые, или карбосоединения).

В артериальной крови напряжение СО 2 5.3 кПа (40 мм рт.ст.), в интерстициальной жидкости его напряжение составляет 8.0- 10.7 кПа (60-80 мм рт.ст.). Благодаря этим градиентам, образующийся в тка­нях СО 2 переходит из интерстициальной жидкости в плазму крови, а из нее - в эритроциты. Вступая в реакцию с водой, СО 2 образует угольную кислоту: СО 2 + Н 2 О <> Н 2 СО 3 . Реакция эта обратима и в тканевых капиллярах идет преимущественно в сторону образования Н 2 СО 3 (рис.8.8.А). В плазме эта реакция протекает медленно, но в эритроцитах образование угольной кислоты под влиянием фермента ускоряет реакцию гидратации СО 2 в 15000-20000 раз. Угольная кислота диссоциирует на ионы Н + и НСО 3 . Когда содержание ионов НСО 3 повышается, они диффундируют их эритроцита в плазму, а ионы Н + остаются в эритроците, так как мембрана эритроцита сравнительно непроницаема для катионов. Выход ионов НСО 3 в плазму уравновешивается поступлением из плазмы ионов хлора. При этом в плазме высвобождаются ионы натрия, которые связываются поступающими из эритроцита ионами НСО 3 , образуя NaHCO 3 . Ге­моглобин и белки плазмы, проявляя свойства слабых кислот, обра­зуют соли в эритроцитах с калием, а в плазме с натрием. Угольная кислота обладает более сильными кислотными свойствами, поэтому при ее взаимодействии с солями белков ион Н + связывается с белковым анионом, а ион НСО 3 с соответствующим катионом об­разует бикарбонат (в плазме NaHCO 3 , в эритроците КНСО 3).

Рис.8.8. Схема процессов, происходящих в плазме и эритроцитах при газообмене в тканях (А) и легких (Б).

В крови тканевых капилляров одновременно с поступлением СО 2 внутрь эритроцита и образованием в нем угольной кислоты происхо­дит отдача кислорода оксигемоглобином. Восстановленный гемоглобин представляет собой более слабую кислоту (т.е. лучший акцептор про­тонов), чем оксигенированный. Поэтому он легче связывает водород­ные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, присутствие восстановленного гемоглобина в венозной крови способствует связыванию СО 2 тогда как образование оксигемоглобина в легочных капиллярах облегчает отдачу углекислого газа.

В переносе кровью СО 2 большое значение имеет также химичес­кая связь СО 2 с конечными аминогруппами белков крови, важней­ший из которых - глобин в составе гемоглобина. В результате реакции с глобином образуется так называемый карбаминогемогло бин. Восстановленый гемоглобин обладает большим сродством к СО 2 , чем оксигемоглобин. Таким образом, диссоциация оксигемоглобина в тканевых капиллярах облегчает связывание СО 2 , а в легких обра­зование оксигемоглобина способствует выведению углекислого газа.

Из общего количества СО, которое может быть извлечено из крови, лишь 8-10% СО, находится в соединении с гемоглобином. Однако, роль этого соединения в транспорте СО 2 кровью достаточно велика. Примерно 25- 30% СО 2 , поглощаемого кровью в капиллярах боль­шого круга, вступает в соединение с гемоглобином, а в легких - выводится из крови.

Когда венозная кровь поступает в капилляры легких, напряжение СО 2 в плазме снижается и находящийся внутри эритроцита в физи­чески растворенном виде СО 2 выходит в плазму. По мере этого, Н 2 СО 3 превращается в СО 2 и воду (рис.8.8.Б), причем карбоангидраза катализирует реакцию, идущую в этом направлении. Н 2 СО 3 для такой реакции доставляется в результате соединения ионов НСО 3 с ионами водорода, высвобождающихся из связи с белковыми анионами.

В состоянии покоя с дыханием из организма человека удаляется 230 мл СО 2 в минуту или около 15000 ммоль в сутки. Поскольку СО 2 является «летучим» ангидридом угольной кислоты, при его уда­лении из крови исчезает примерно эквивалентное количество ионов водорода. Поэтому дыхание играет важную роль в поддержании кислотно-щелочного равновесия во внутренней среде организма. Если в результате обменных процессов в крови увеличивается содержание водородных ионов, то, благодаря гуморальным механизмам регуля­ции дыхания, это приводит к увеличению легочной вентиляции (ги­первентиляции). При этом молекулы СО 2 , образующиеся в процессе реакции НСО 3 + Н + -> Н 2 СО 3 -> Н 2 О + СО 2 , выводятся в большем количестве и рН возвращается к нормальному уровню.

Обмен газов между кровью и тканями

text_fields

text_fields

arrow_upward

Газообмен О 2 и СО 2 между кровью капилляров большого круга и клетками тканей осу­ществляется путем простой диффузии. Перенос дыхательных газов (О 2 - из крови в ткани, СО 2 - в обратном направлении) проис­ходит под действием концентрационного градиента этих газов между кровью в капиллярах и интерстициальной жидкостью. Разность напряжения О 2 по обе стороны стенки кровеносного капилляра, обес­печивающая его диффузию из крови в интерстициальную жидкость, составляет от 30 до 80 мм рт.ст. (4.0-10.7 кПа). Напряжение СО 2 в интерстициальной жидкости у стенки кровеносного капилляра на 20-40 мм рт.ст. (2.7-5.3 кПа) больше, чем в крови. Поскольку СО 2 диффундирует примерно в 20 раз быстрее, чем кислород, удаление СО 2 происходит гораздо легче, чем снабжение кислородом.

На газообмен в тканях влияют не только градиенты напряжения дыхательных газов между кровью и интерстициальной жидкостью, но также площадь обменной поверхности, величина диффузионного расстояния и коэффициенты диффузии тех сред, через которые осуществляется перенос газов. Диффузионный путь газов тем коро­че, чем больше плотность капиллярной сети. В расчете на 1 мм 3 суммарная поверхность капиллярного русла достигает, например, в скелетной мышце 60 м 2 , а в миокарде - 100 м 2 . Площадь диффузии определяет также количество эритроцитов, протекающих по капил­лярам в единицу времени в зависимости от распределения кровотока в микроциркуляторном русле. На выход О 2 из крови в ткань влияет конвекция плазмы и интерстициальной жидкости, а также цитоплазмы в эритроцитах и клетках ткани. Диффундирующий в ткани О 2 потребляется клетками в процессе тканевого дыхания, поэтому разность его напряжения между кровью, интерстициальной жидкостью и клетками существует постоянно, обеспечивая диффу­зию в этом направлении. При увеличении потребления тканью кис­лорода его напряжение в крови уменьшается, что облегчает диссо­циацию оксигемоглобина.

Количество кислорода, которое потребляют ткани, в процентах от общего содержания его в артериальной крови называется коэффи­циентом утилизации кислорода. В покое для всего организма коэф­ фициент утилизации кислорода равен примерно 30-40%. Однако, при этом потребление кислорода в различных тканях существенно отличается, и коэффициент его утилизации, например, в миокарде, сером веществе мозга, печени, составляет 40-60%. В состоянии покоя серым веществом головного мозга (в частности, корой боль­ших полушарий) потребляется в минуту от 0.08 до 0.1 мл О 2 на 1 г ткани, а в белом веществе мозга - в 8-10 раз меньше. В кор­ковом веществе почки среднее потребление О 2 примерно в 20 раз больше, чем во внутренних участках мозгового вещества почки. При тяжелой физической нагрузке коэффициент утилизации О 2 работа­ющими скелетными мышцами и миокардом достигает 90%.

Кислород, поступающий в ткани, используется в клеточных окис­лительных процессах, которые протекают на субклеточном уровне с участием специфических ферментов, расположенных группами в строгой последовательности на внутренней стороне мембран мито­хондрий. Для нормального хода окислительных обменных процессов в клетках необходимо, чтобы напряжение О 2 в области митохондрий было не меньше 0.1-1 мм рт.ст. (13.3-133.3 кПа).
Эта величина называется критическим напряжением кислорода в митохондриях . Поскольку единственных резервом О 2 в большинстве тканей служит его физически растворенная фракция, снижение поступления О 2 из крови приводит к тому, что потребности тканей в О 2 перестают удовлетворяться, развивается кислородное голодание и окислительные обменные процессы замедляются.

Единственной тканью, в которой имеется депо О 2 , является мы­шечная. Роль депо О 2 в мышечной ткани играет пигмент миоглобин, близкий по строению к гемоглобину и способный обратимо связы­вать О 2 . Однако, содержание миоглобина в мышцах человека неве­лико, и поэтому количество запасенного О, не может обеспечить их нормальное функционирование в течение длительного промежутка времени. Сродство миоглобина к кислороду выше, чем у гемогло­бина: уже при напряжении О, 3-4 мм рт.ст. 50% миоглобина пере­ходит в оксимиоглобин, а при 40 мм рт.ст. миоглобин насыщен О 2 до 95%. Во время сокращения мышцы, с одной стороны, увеличи­ваются потребности клеток в энергии и усиливаются окислительные процессы, с другой - резко ухудшаются условия доставки кислоро­да, поскольку при сокращении мышца сдавливает капилляры и доступ крови по ним может прекращаться. Во время сокращения расходуется О 2 , запасенный в миоглобине за время расслабления мышцы. Особое значение это имеет для постоянно активно рабо­тающей мышцы сердца, поскольку ее снабжение кислородом из крови носит периодический характер. Во время систолы в результате повышения интрамурального давления кровоток в бассейне левой коронарной артерии снижается и во внутренних слоях миокарда левого желудочка может на короткое время полностью прекратиться. Когда напряжение О 2 в мышечных клетках падает ниже 10-15 мм рт.ст. (1.3-2.0 кПа), миоглобин начинает отдавать О, запасенный в виде оксимиоглобина за время диастолы. Среднее содержание мио глобина в сердце составляет 4 мг/г. Поскольку 1 г миоглобина может связать примерно до 1.34 мл кислорода, в физиологических условиях запасы кислорода в миокарде составляют около 0.005 мл на 1 г ткани. Этого количества кислорода достаточного для того, чтобы в условиях полного прекращения его доставки кровью под­держивать в миокарде окислительные процессы лишь в течение 3-4 с. Однако, длительность систолы намного короче, поэтому миог­лобин, выполняющий функцию кратковременного депо О 2 , предо­храняет миокард от кислородного голодания.

Кислород транспортируется артериальной кровью в двух формах: связанный с гемоглобином внутри эритроцита и растворенный в плазме.

Эритроцит происходит из недифференцированной костномозговой ткани. При созревании клетка утрачивает ядро, рибосомы и митохондрии. Вследствие этого эритроцит не способен к выполнению таких функций, как клеточное деление, окислительное фосфорилирование и синтез белка. Источником энергии для эритроцита служит преимущественно глюкоза, метаболизируемая в цикле Эмбдена-Миергофа, или гексозомонофосфатном шунте. Наиболее важным внутриклеточным белком для обеспечения транспорта О2 и СО2 является гемоглобин, представляющий собой комплексное соединение железа и порфирина. С одной молекулой гемоглобина связываются максимально четыре молекулы О2. Гемоглобин, полностью загруженный О2, называется оксигемоглобином, а гемоглобин без О2 или присоединивший менее четырех молекул О2 - деоксигенированным гемоглобином.

Основной формой транспорта О2 является оксигемоглобин. Каждый грамм гемоглобина может максимально связать 1,34 мл О2. Соответственно, кислородная емкость крови находится в прямой зависимости от содержания гемоглобина:

О2 емкость крови = ? 1,34 О2 /гHb/100 мл крови (3.21).

У здоровых людей с содержанием гемоглобина 150 г/л кислородная емкость крови составляет 201 мл О2 крови.

Кровь содержит незначительное количество кислорода, не связанного с гемоглобином, а растворенного в плазме. Согласно закону Генри, количество растворенного О2 пропорционально давлению О2 и коэффициенту его растворимости. Растворимость О2 в крови очень мала: только 0,0031 мл растворяется в 0,1 л крови на 1 мм рт. ст. Таким образом, при напряжении кислорода 100 мм рт. ст. в 100 мл крови содержится только 0,31 мл растворенного О2.

СаО2 = [(1,34)(SaО2)] + [(Pa)(0,0031)] (3.22).

Кривая диссоциации гемоглобина. Сродство гемоглобина к кислороду возрастает по мере последовательного связывания молекул О2, что придает кривой диссоциации оксигемоглобина сигмовидную или S-образную форму (рис. 3.14).

Верхняя часть кривой (РаО2?60 мм рт.ст.) плоская. Это указывает на то, что SaО2 и, следовательно, СаО2, остаются относительно постоянными, несмотря на значительные колебания РаО2. Повышение СаО2 или транспорта О2 может быть достигнуто за счет увеличения содержания гемоглобина или растворения в плазме (гипербарическя оксигенация).

РаО2, при котором гемоглобин насыщен кислородом на 50% (при 370 рН=7,4), известно как Р50. Эта общепринятая мера сродства гемоглобина к кислороду. Р50 крови человека составляет 26,6 мм рт. ст. Однако оно может изменяться при различных метаболических и фармакологических условиях, воздействующих на процесс связывания кислорода гемоглобином. К ним относят следующие факторы: концентрацию ионов водорода, напряжение углекислого газа, температуру, концентрацию 2,3-дифосфоглицерата (2,3-ДФГ) и др.

Рис. 3.14. Сдвиги кривой диссоциации оксигемоглобина при изменениях рН, температуры тела и концентрации 2,3-дифосфоглицерата (2,3-ДФГ) в эритроцитах

Изменение сродства гемоглобина к кислороду, обусловленное колебаниями внутриклеточной концентрации водородных ионов, называется эффектом Бора. Снижение рН сдвигает кривую вправо, повышение рН - влево. Форма кривой диссоциации оксигемоглобина такова, что этот эффект более выражен в венозной крови, чем в артериальной. Данный феномен облегчает освобождение кислорода в тканях, практически не сказываясь на потреблении кислорода (в отсутствии тяжелой гипоксии).

Двуокись углерода оказывает двоякое действие на кривую диссоциации оксигемоглобина. С одной стороны, содержание СО2 влияет на внутриклеточный рН (эффект Бора). С другой, накопление СО2 вызывает образование карбаминовых соединений вследствие ее взаимодействия с аминогруппами гемоглобина. Эти карбаминовые соединения служат в качестве аллостерических эффекторов молекулы гемоглобина и непосредственно влияют на связывание О2. Низкий уровень карбаминовых соединений вызывает сдвиг кривой вправо и снижение сродства гемоглобина к О2, что сопровождается увеличение высвобождения О2 в тканях. По мере роста РаСО2 сопутствующее ему увеличение карбаминовых соединений сдвигает кривую влево, повышая связывание О2 гемоглобином.

Органические фосфаты, в частности 2,3-дифосфоглицерат (2,3-ДФГ), образуются в эритроцитах в процессе гликолиза. Продукция 2,3- ДФГ увеличивается во время гипоксемии, что является важным механизмом адаптации. Ряд условий, вызывающих снижение О2 в периферических тканях, таких как анемия, острая кровопотеря, застойная сердечная недостаточность и т.д. характеризуются увеличением продукции органических фосфатов в эритроцитах. При этом уменьшается сродство гемоглобина к О2 и повышается его высвобождение в тканях. И наоборот, при некоторых патологических состояниях, таких как септический шок и гипофосфатемия, наблюдается низкий уровень 2,3-ДФГ, что приводит к сдвигу кривой диссоциации оксигемоглобина влево.

Температура тела влияет на кривую диссоциации оксигемоглобина менее выражено и клинически значимо, чем описанные выше факторы. Гипертермия вызывает повышение Р50, т.е. сдвиг кривой вправо, что является благоприятной приспособительной реакцией не повышенный кислородный запрос клеток при лихорадочных состояниях. Гипотермия, напротив, снижает Р50, т.е. сдвигает кривую диссоциации влево.

СО, связываясь с гемоглобином (образуя карбоксигемоглобин), ухудшает оксигенацию периферических тканей посредством двух механизмов. Во-первых, СО непосредственно уменьшает кислородную емкость крови. Во-вторых, снижая количество гемоглобина, доступного для связывания О2; СО снижает Р50 и сдвигает кривую диссоциации оксигемоглобина влево.

Окисление части двухвалентного железа гемоглобина до трехвалентного приводит к образованию метгемоглобина. В норме у здоровых людей метгемоглобин составляет менее 3% общего гемоглобина. Низкий его уровень поддерживается внутриклеточными ферментными механизмами восстановления. Метгемоглобинемия может наблюдаться как следствие врожденной недостаточности этих восстановительных ферментов или образования аномальных молекул гемоглобина, резистентных к ферментативному восстановлению (например, гемоглобин М).

Доставка кислорода (DО2) представляет собой скорость транспорта кислорода артериальной кровью, которая зависит от кровотока и содержания О2 в артериальной крови. Системная доставка кислорода (DО2), рассчитывается как:

DO2 = СаО2 х Qt (мл/мин) или

DO2 = ([(Hb) ?1,34? % насыщения] + составит 25 %, т. е. 5 мл/20 мл. Таким образом, в норме организм потребляет только 25 % кислорода, переносимого гемоглобином. Когда потребность в О2 превосходит возможность его доставки, то коэффициент экстракции становится выше 25 %. Наоборот, если доставка О2 превышает потребность, то коэффициент экстракции падает ниже 25 %.

Если доставка кислорода снижена умеренно, потребление кислорода не изменяется благодаря увеличению экстракции О2 (насыщение гемоглобина кислородом в смешанной венозной крови снижается). В этом случае VO2 не зависит от доставки. По мере дальнейшего снижения DO2 достигается критическая точка, в которой VO2 становится прямо пропорциональна DO2. Состояние, при котором потребление кислорода зависит от доставки, характеризуется прогрессирующим лактат-ацидозом, обусловленным клеточной гипоксией. Критический уровень DO2 наблюдается в различных клинических ситуациях. Например, его значение 300 мл/(мин*м2) отмечено после операций в условиях искусственного кровообращения и у больных с острой дыхательной недостаточностью.

Напряжение углекислого газа в смешанной венозной крови (PvCO2) в норме составляет примерно 46 мм рт. ст., что является конечным результатом смешивания крови, притекающей из тканей с различными уровнями метаболической активности. Венозное напряжение углекислого газа в венозной крови меньше в тканях с низкой метаболической активностью (например, в коже) и больше в органах с высокой метаболической активностью (например, в сердце).

Двуокись углерода легко диффундирует. Ее способность к диффузии в 20 раз превышает таковую у кислорода. СО2, по мере образования в процессе клеточного метаболизма, диффундирует в капилляры и транспортируется к легким в трех основных формах: в виде растворенной СО2, в виде аниона бикарбоната и в виде карбаминовых соединений.

СО2 очень хорошо растворяется в плазме. Количество растворенной фракции определяется произведением парциального давления СО2 и коэффициента растворимости (? =0,3 мл/л крови /мм рт. ст.). Около 5% общей двуокиси углерода в артериальной крови находится в форме растворенного газа.

Анион бикарбоната является преобладающей формой СО2 (около 90%) в артериальной крови. Бикарбонатный анион является продуктом реакции СО2 с водой с образованием Н2СО3 и ее диссоциации:

СО2 + Н2О?Н2СО3?Н+ + НСО3- (3.25).

Реакция между СО2 и Н2О протекает медленно в плазме и очень быстро в эритроцитах, где присутствует внутриклеточный фермент карбонгидраза. Она облегчает реакцию между СО2 и Н2О с образованием Н2СО3. Вторая фаза уравнения протекает быстро без катализатора.

По мере накопления НСО3- внутри эритроцита анион диффундирует через клеточную мембрану в плазму. Мембрана эритроцита относительно непроницаема для Н+, как и вообще для катионов, поэтому ионы водорода остаются внутри клетки. Электрическая нейтральность клетки в процессе диффузии СО2 в плазму обеспечивает приток ионов хлора из плазмы в эритроцит, что формирует так называемый хлоридный сдвиг (сдвига Гамбургера). Часть Н+, остающихся в эритроцитах, забуферируется, соединясь с гемоглобином. В периферических тканях, где концентрация СО2 высока и значительные количества Н+ накапливаются эритроцитами, связывание Н+ облегчается деоксигенацией гемоглобина. Восстановленный гемоглобин лучше связывается с протонами, чем оксигенированный. Таким образом, деоксигенация артериальной крови в периферических тканях способствует связыванию Н+ посредством образования восстановленного гемоглобина.

СО2 + Н2О + HbО2 > HbH+ + HCO3+ О2 (3.26).

Это увеличение связывания СО2 с гемоглобином известно как эффект Холдейна. В легких процесс имеет противоположное направление. Оксигенация гемоглобина усиливает его кислотные свойства, и высвобождение ионов водорода смещает равновесие преимущественно в сторону образования СО2:

О2 + НСО3- + HbН+ > СО2 + Н2О + HbО2




© 2024
womanizers.ru - Журнал современной женщины