21.09.2019

Замкнутые системы массового обслуживания. Теория массового обслуживания


Модель обслуживания машинного парка представляет собой модель замкнутой системы массового обслуживания.

До сих пор мы рассматривали только такие системы массового обслуживания, для которых интенсивность входящего потока заявок не зависит от состояния системы. В этом случае источник заявок является внешним по отношению к СМО и генерирует неограниченный поток требований. Рассмотрим системы массового обслуживания, для которых зависит от состояния системы, при чем источник требований является внутренним и генерирует ограниченный поток заявок.

Например, обслуживается машинный парк, состоящий из машин, бригадой механиков , причем каждая машина мо­жет обслуживаться только одним механиком. Здесь машины являются источниками требований (заявок на обслуживание), а механики - обслуживающими каналами. Неисправная машина после обслуживания используется по своему прямому назначению и становится потенциальным источником возникновения требований на обслуживание. Очевидно, что интенсивность зависит от того, сколько машин в данный момент находится в эксплуатации и сколько машин обслуживается или стоит в очереди, ожидая обслуживания .

В рассматриваемой модели емкость источника требований следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин , которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из находится в эксплуатации и генерирует пуассоновский поток требований с интенсивностью независимо от других объектов, общий (суммарный) входящий поток имеет интенсивность . Требование, поступившее в систему в момент, когда свободен хотя бы один канал, немедленно идет на обслуживание. Если требование застает все каналы занятыми обслуживанием других требований, то оно не покидает систему, а становится в очередь и ждет, пока один из каналов не станет свободным.

Таким образом, в замкнутой системе массового обслуживания входящий поток требований формируется из выходящего потока.



Состояние системы характеризуется общим числом требований , находящихся на обслуживании и в очереди. Для рассматриваемой замкнутой системы, очевидно, . При этом если система находится в состоянии , то число объектов, находящихся в эксплуатации, равно .

Если - интенсивность потока требований в расчете на одну машину, а - интенсивность обслуживания одним механиком то:

(1)

(2)

Состояние СМО определяется числом машин, как обслуживаемых, так и ожидающих обслуживания:

Все машины исправны;

Одна машина неисправна (один механик занят обслуживанием), очереди нет;

Машин неисправны ( механиков заняты обслуживанием), очереди нет;

- - - - - - - - - - - - - - - - - - - - - - - -

Машин неисправны ( механиков заняты обслуживанием), машин стоят в очереди.

Построим граф состояний СМО.

Система дифференциальных уравнений Колмогорова, описывающих работу за­мкнутой СМО, выглядит следующим об­разом:

(3)

Для стационарного режима система ДУ трансформируется в систему алгебраических уравнений:

(4)

Определяем финальные вероятности из системы (4)

(5)

Величина определяется из условия нормировки .

Определим показатели эффективности СМО:

· Среднее число требований в очереди на обслуживание (средняя длина очереди)

; (6)

· среднее число требований, находящихся в системе (на обслуживании и в очереди)

; (7)

· среднее число механиков (каналов), «простаивающих» из-за отсутствия работы

; (8)

· коэффициент простоя обслуживаемого объекта (машины) в очереди

; (9)

· коэффициент использования объектов (машин)

; (10)

· коэффициент простоя обслуживающих каналов (механиков)

· среднее время ожидания обслуживания (время ожидания обслуживания в очереди)

. (12)

Пример .Для обслуживания десяти персональных компьютеров (ПК) выделено два инженера одинаковой производительности. Поток отказов (неисправностей) одного компьютера - пуассоновский с интенсивностью = 0,2. Время обслуживания ПК подчиняется показательному закону. Среднее время обслуживания одного ПК одним инженером составляет .

 Возможны два варианта организации обслуживания ПК:

· оба инженера обслуживают все десять компьютеров, так что при отказе ПК его обслуживает один из свободных инженеров, в этом случае ;

· каждый из двух инженеров обслуживает по пять закреплен­ных за ним ПК. В этом случае .

Необходимо выбрать наилучший вариант организации обслуживания ПК.

Решение

1. Вычислим интенсивность обслуживания

2. Приведенная интенсивность

.

3. Вычислим вероятностные характеристики СМО для двух вариантов организации обслуживания ПК.

Вариант 1

1. Определим вероятности состояний системы:

Учитывая, что =1 и используя результаты расчета P k , вычислим P 0:

Откуда P 0 = 0,065.

 Определим среднее число компьютеров в очереди на обслуживание:

 Определим среднее число ПК, находящихся в системе (на обслу­живании и в очереди):

 Определим среднее число инженеров, простаивающих из-за от­сутствия работы.

До сих пор мы рассматривали такие системы массового обслуживания, где заявки приходили откуда-то извне и интенсивность потока заявок не зависела от состояния самой системы. Сейчас мы рассмотрим системы массового обслуживания другого типа – такие, в которых интенсивность потока поступающих заявок зависит от состояния самой СМО. Такие системы массового обслуживания называются замкнутыми.

Примером замкнутой СМО может служить, например, следующая система. Рабочий-наладчик обслуживает m станков. Каждый станок может в любой момент выйти из строя и потребовать обслуживания со стороны наладчика. Интенсивность потока неисправностей каждого станка равна . Вышедший из строя станок останавливается. Если в этот момент рабочий свободен, он берется за наладку станка; на это он тратит среднее время t обсл =1/, где – интенсивность потока обслуживаний (наладок).

Если в момент выхода станка из строя рабочий занят, станок становится в очередь на обслуживание и ждет, пока рабочий не освободится.

Иными словами, мы имеем СМО с m источниками, каждый из которых может выдать заявку и после этого ожидает окончания обслуживания этой заявки. Если в приведенном примере станки обслуживаются бригадой из n наладчиков, то СМО становится многоканальной.

Другим примером может быть система с центральным процессором и удаленными терминалами. Пользователь, отправивший запрос с терминала не может выдать новый запрос, пока не получит сообщения от процессора об окончании обработки предыдущего.

Характерным для замкнутой системы массового обслуживания является наличие ограниченного числа источников заявок.

В сущности, любая СМО имеет дело только с ограниченным чис­лом источников заявок, но в ряде случаев число этих источников так велико, что можно пренебречь влиянием состояния самой СМО на по­ток заявок. Например, поток вызовов на АТС крупного города исходит, в сущности, от ограниченного числа абонентов, но это число так велико, что практически можно считать интенсивность потока заявок независимой от состояний самой АТС (сколько каналов занято в данный момент). В замкнутой же системе массового обслуживания источники заявок, наряду с каналами обслуживания, рассматриваются как элементы СМО.

Построим аналитическую модель такой системы.

Сначала рассмотрим случай с одним обслуживающим прибором и количеством источников равным m. Состояния будем кодировать числом выданных заявок. Диаграмма интенсивностей переходов для данной системы изображена на рис.2.17.

Рис. 2.17. ДИП для одноканальной замкнутой СМО

Определим вероятности состояний.

Исходя из уравнения нормировки, получаем

Найдем характеристики эффективности замкнутой СМО.

Абсолютная пропускная способность – это среднее количество заявок, обслуживаемых каналом в единицу времени. Вычислим эту характери­стику. Канал занят обслуживанием заявок с вероятностью

Р зан = 1-Р 0 =1-р .

Если он занят, то обслуживает в среднем μ заявок в единицу времени. Таким образом, абсолютная пропускная способность системы

А = (1-р ) μ .

Так как каждая заявка, в конце концов, будет обслуже­на, то относительная пропускная способность q = 1.

Вычислим среднее число заявок, ожидающих обслуживания,иначе - среднее число источников, выдавших заявку и ожидающих ответа. По сути, это количество заявок, находящихся в данный момент в системе L c . Вообще говоря, эту величину можно вычислить непосредственно, по формуле

L c = 1Р 1 + 2Р 2 +…+ mР m ,

но проще будет найти ее через абсолютную пропускную способность А.

Каждый источник, еще не выдавший заявку, порождает поток заявок с интенсивностью . Таких источников m - L c , а поток, порождаемый ими имеет интенсивность (m - L c). Все эти заявки будут обслужены каналом, следовательно,

(m - L c) = (1-р ) μ ,

L c =

Определим теперь среднее число источников, выдавших заявки, обслуживание которых еще не началось. Фактически, это количество заявок в очереди L оч.

Среднее число заявок в системе L c складывается из числа заявок в очереди L оч и среднего числа заявок, находящихся под обслуживанием в канале :

L c = L оч + .

В канале может находиться 0 заявок с вероятностью р или 1 с вероятностью 1- р , следовательно,

L оч = .

Теперь перейдем к случаю с несколькими каналами обслуживания. Будем кодировать состояния общим числом выданных источниками и еще не обслуженных заявок. Так как источник не может выдать новую заявку до окончания обслуживания предыдущей, то интенсивностьобщего потока заявок зависит от того, сколько заявок связано с процессом обслуживания (непосредственно обслуживается или стоит в очереди). Количество источников –m , число каналов –n (n < m ). Диаграмма интенсивностей переходов для данной системы изображена на рис. 2.18.

Рис. 2.18. ДИП для многоканальной замкнутой СМО

Требуется найти вероятности состояний данной системы и ее характеристики.

, i =1, 2,…,n .

При i > n возникает ситуация, когда n заявок обслуживаются, а i - n ожидают обслуживания.

Подставляя в выражения для P n + i и P m полученное выше значение P n , получаем

Исходя из уравнения нормировки, определим значение p :

Через вычисленные вероятности может быть определено среднее число занятых каналов:

Абсолютная пропускная способность системы

Пример. Рабочий обслуживает группу из трех станков. Каждый станок останавливается в среднем 2 раза в час Процесс наладки занимает у рабочего, в среднем, 10 минут Определить характеристики замкнутой СМО: вероятность занятости рабочего; его абсолютную пропускную способность А ; среднее коли­чество неисправных станков L c . Все потоки полагаем простейшими.

Решение. Имеем п = 3, λ = 2, μ == 6,
.

Определяем по формулам для одноканальной замкнутой СМО

Вероятность занятости рабочего:

Р зан =1-Р 0 =1-р =0,654.

Абсолютная пропускная способность (среднее число неисправностей, которое рабочий ликвидирует в час):

Среднее число неисправных станков:

L c =

Ранее отмечалось, что СМО можно разбить на две группы - разомкнутые и замкнутые. Типичным представителем систем разомкнутого типа являются предприятие по капитальному ремонту электрических машин, на которое поступают вышедшие из строя электротехнические изделия из многих объектов. Поток отказов электрических машин является случайным, случайным является и объект, из которого поступили заявки.

Замкнутые СМО относятся к классу циклических систем. Для замкнутых СМО характерно конечное число заявок, циркулирующих в системе «источник-СМО». Обслуженные заявки возвращаются в источник и через некоторое время (в общем случае случайное), могут вновь появиться на входе. Поведение источника в замкнутых СМО является некоторой функцией состояния СМО. В связи с этим поток на выходе системы в какой-то мере определяет входящий поток.

Простейшим примером замкнутой СМО может служить работа дежурного электромонтера на объекте, имеющем п электроустановок.

В случае возникновения неисправности электромонтер обслуживает одну электроустановку. Отремонтированное изделие остается на своем рабочем месте и снова становится потенциальным источником на новую заявку, т. е. повторно может выйти из строя и потребовать ремонта. В таких системах, как правило, общее число поступающих заявок ограничено размером объекта и в большинстве случаев является постоянной величиной.

Будем считать, что плотность поступления заявок на обслуживание от электроустановок равна X, число заявок имеет пуассоновское распределение, а время обслуживания распределено по показательному закону с параметром р. В системе могут находиться как обслуженные заявки, так и те, которые стали в очередь и ожидают, пока обслуживаемый канал освободится.

Схема возможных состояний такой системы показана на рис. 1.13.

Рис. 1.13.

Система может иметь следующие состояния:

s 0 - все электроустановки исправны и электромонтер не занят их обслуживанием;

Sj - электромонтер обслуживает одну электроустановку, остальные электроустановки работают;

s 2 - две электроустановки неисправны, одна ремонтируется, вторая находится в очереди;

s k - к электроустановок неисправны, одна ремонтируется, к - 1 стоят в очереди;

s n - п электроустановок неисправны, одна ремонтируется, п - 1 ожидают ремонта.

Стрелки на схеме показывают переходы из одного состояния в другое с интенсивностями X и р.

При переходе системы из состояния s 0 в состояние Sj интенсивность потока неисправностей равна пХ (поток неисправностей всех работающих электроустановок).

При переходе системы из состояния Sj в состояние s 2 интенсивность потока неисправностей уже определяется п - 1 работающими электроустановками (одно изделие находится в ремонте) и т. д.

При переходе же системы по стрелкам справа налево интенсивность потока событий р одинакова (принимается одинаковое время устранения неисправностей в электроустановках).

Такие СМО исследовал К. Пальм, который вывел и получил удобные и простые уравнения для определения вероятностей состояния системы:


Пример 1.15. Дежурный электромонтер на птицефабрике обслуживает 3 объекта. На каждом из объектов в сутки возникает по две неисправности. Процесс устранения неисправности занимает у электромонтера 1 ч. Необходимо рассчитать вероятности состояний, вероятность занятости электромонтера, абсолютную пропускную способность системы.

Особенностью замкнутой системы СМО является, то, что длина очереди не ограничивается, так как обслуженные объекты снова могут попадать в систему в виде заявок. Примером такой СМО является зона текущего ремонта АТП, когда автомобиль не может уйти из системы без ремонта. Для замкнутых СМО m→ ∞. В связи с этим формула определения вероятности Р 0 принимает вид

Сумма во втором слагаемом в знаменателе представляет собой геометрическую прогрессию со знаменателем

. (5.21)

Известно, что сумма геометрической прогрессии равна

Для установившегося режима (α = const, m→∞) система работает только при условии

, (5.23)

то есть когда суммарная пропускная способность всех каналов больше параметра потока заявок. Поэтому указанная сумма представляет собой бесконечно убывающую геометрическую прогрессию и второе слагаемое равно нулю

С учетом этого, вероятность Р 0 определяется по формуле

(5.25)

При исследовании замкнутых систем решается задача оптимизации каналов обслуживания. Например оптимальным числом постов в зоне ТР будет то, при котором наступает минимум суммарных затрат на создание постов и убытков от простоя автомобилей в ремонте (рис. 5.5)

где m пк - среднее число простаивающих (незанятых каналов); M(S) - средняя длина очереди; а кан - убытки от простоя канала обслуживания в единицу времени; а авт - убытки от простоя автомобиля (потеря прибыли) в единицу времени.

Рис. 5.5. Зависимость удельных затрат на содержание каналов обслуживания (), убытков от простоя в ожидании обслуживания (), и суммарных (), от числа каналов в СМО.

Аналогично применяются оптимальные решения и в других областях, подчиняющихся законам систем массового обслуживания. Оптимизация СМО осуществляется и другими методами, в том числе и с помощью метода статистического моделирования.

Применение ТМО и метода статистического моделирования для определения оптимальных решений



Общие сведения

Метод статистического моделирования (метод Монте-Карло) заключается в воспроизведении исследуемого физического процесса при помощи вероятностной математической модели и вычислении характеристик этого процесса. Он основан на многократных испытаниях построенной модели с последующей статистической обработкой числовых данных для определения статистических оценок параметров процесса. Основой метода статистического моделирования является закон больших чисел.

Под законами больших чисел в теории вероятностей понимается ряд теорем, в которых доказывается сходимость по вероятности статистических характеристик и некоторых постоянных чисел. Так одна из теорем П.Л. Чебышева формулируется так: «При неограниченном увеличении числа независимых испытаний п среднее арифметическое равноточных результатов наблюдений х i случайной величины х , имеющую конечную дисперсию Д [х ], сходится по вероятности к математическому ожиданию М [х ] этой случайной величины.

Теорема Бернулли формулируется так: «При неограниченном увеличении числа независимых испытаний в одних и тех же условиях частость Р(А) наступления события А сходится к его вероятности Р . Поэтому для определения вероятности какого либо события, например вероятности состояний СМО (Р 0 , Р 1 , …Р к ) вычисляются частости для одной реализации, а затем для большого числа реализаций (п =1000). Результат усредняют и с некоторым приближением определяют искомые вероятности состояний системы, математическое ожидание числа занятых каналов, длины очереди и др.

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время T з смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как ,– среднее время обслуживания станка, которое вычисляется как, гдеn – число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где– среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO: каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t 0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t 0 .

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m , где m – общее число станков. Тогда возможны следующие состояния:

S 0 – все станки работают, манипулятор стоит.

S 1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S 2 – работают m -2 станка, на одном станке идет смена заготовки, другой ожидает.

S 3 – работают m -2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

S m – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние S k из одного из возможных состояний S 1 , S 2 , ... S m зависит от случайного поступления заявок на обслуживание и вычисляется как:

p 0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S 1 до S m ­ . Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S 2 , – S m , при этом один станок обслуживается, а (k-1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

Применение метода Монте-Карло для решения задач, связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t 1 , t 2 , ..., t k , ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t 1 , t 2 , ..., перейти к случайным величинам 1 , 2 , ..., m , ... , таким образом, что:

Случайные величины k являются длинами интервалов времени между последовательными моментами t k .

Совокупность случайных величин i считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины k , поэтому часто пользуются соответствующей функцией плотности f (z 1 , z 2 ,..., z k ) .

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины k независимы. Поэтому . Функцииf i (z i ) при i >1 представляют собой условные функции плотности при условии, что в начальный момент интервала k (i >1) поступила заявка. В отличие от этого функция f 1 (z 1 ) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t 0 , t 0 + t ) не зависит от t 0 , а зависит только от t и k ). Для стационарных потоков без последействия имеют место соотношения:

где  – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется n св свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q =1/ m . В более сложных случаях вероятности q 1 , q 2 ,..., q m считаются зависящими от времени пребывания заявки в системе, времени, остающегося до получения отказа и других параметров.

Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R = R (t ) , задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время p . Величину p будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более n ) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.




© 2024
womanizers.ru - Журнал современной женщины