20.04.2019

Нервные центры их свойства. По функции нейроны делятся на


Нервный центр – это совокупность нейронов, обеспечивающих регуляцию какого-либо конкретного физиологического процесса или функции.

Нервный центр в узком смысле – это совокупность нейронов, без которых данная конкретная функция не может регулироваться. Например, без нейронов дыхательного центра продолговатого мозга дыхание прекращается. Нервный центр в широком смысле - это совокупность нейронов, которые участвуют в регуляции конкретной физиологической функции, но не являются строго обязательными для ее осуществления! Например, в регуляции дыхания кроме нейронов продолговатого мозга участвуют нейроны пневмотаксического центра варолиевого моста, отдельные ядра гипоталамуса, кора больших полушарий и другие образования головного мозга.

Все нейроны нервного центра разделяют на 2 неравные по количеству и качеству группы.

Первая группа – нейроны центральной зоны . Это наиболее возбудимые нейроны, которые возбуждаются в ответ на поступление порогового (для нервного центра) сигнала. Таких нейронов около 15-20%, и они не обязательно располагаются в середине нервного центра, как это изображено на рис.1. Особенностью их является то, что они имеют на своем теле больше синаптических терминалей от сенсорных и вставочных нейронов.

Вторая группа – нейроны подпороговой каймы. Это менее возбудимые нейроны, которые не возбуждаются в ответ на поступление пороговых им-пульсов, но при действии более сильных раздражителей они возбуждаются и включаются в работу нервного центра, обеспечивая ее усиление. Таких нейронов большинство (80-85%), и они не обязательно располагаются на периферии нервного центра, но все имеют значительно меньше синаптических терминалей от сенсорных и вставочных нейронов по сравнению с нейронами центральной зоны.

На рис. 1 нейроны центральной зоны условно поставлены в центр внутреннего круга (А), а нейроны подпороговой каймы – в пространство между внутренним и наружным кругами (Б). Таким образом, если к нервному центру по афферентному входу (В) придет пороговый импульс, то возбудятся три нейрона центральной зоны, а на десяти нейронах подпороговой каймы потенциалы действия не возникнут, но появится местная деполяризация – возбуждающий постсинаптический потенциал (ВПСП).



От структуры нервного центра зависят его свойства, а они, в свою очередь, влияют на процесс проведения возбуждения через нервный центр, на его скорость и степень выраженности. От свойств нервных центров во многом зависит процесс распространения возбуждения по ЦНС, что имеет важное значение в интегративной деятельности организма.

Свойства нервных центров обусловлены описанной выше нейронной организацией нервного центра, а также химическим способом передачи возбуждения в синапсах. При электрическом способе передачи возбуждения нервные центры не имели бы подобных свойств.

Свойства нервных центров: 1 одностороннее проведение возбуждения; 2 задержка проведения возбуждения; 3 суммация; 4 облегчение; 5 окклюзия; 6 мультипликация; 7 трансформация; 8 последействие; 9 посттетаническая потенциация; 10 утомление; 11 тонус; 12 высокая чувствительность к изменению состояния внутренней среды организма; 13 пластичность.

1) Свойство «одностороннее проведение возбуждения» прямо связано со структурно-функциональными особенностями синапса. В синапсе медиатор выделяется из пресинаптического аппарата и поступает на постсинаптическую мембрану, на которой находятся белки-рецепторы, чувствительные к этому медиатору (они закрывают различные ионные каналы на постсинаптической мембране). Следовательно, возбуждение через синапс, а значит, и через нервный центр проходит только в одну сторону.

2) Свойство «задержка проведения возбуждения» также связано с химическим способом передачи возбуждения в синапсах. В отличие от электрического, при этом способе на передачу возбуждения в синапсе, а значит, и в нервном центре затрачивается больше времени (выделение медиатора из пресинаптического аппарата, поступление его на постсинаптическую мембрану, контакт с белками-рецепторами и т.д.), чем на проведение возбуждения по нервному волокну. Русский физиолог А.Ф. Самойлов (1924) определил, что скорость проведения возбуждения по нервному волокну в 1,5 раза больше, чем через синапс. На основании этого факта ученый высказал предположение, что в основе проведения возбуждения по нервному волокну лежат физические процессы, а в основе синаптического способа передачи – химические.

Время проведения возбуждения («синаптическая задержка») через синапсы соматической нервной системы составляет 0,5-1 мс, а через синапсы вегетативной нервной системы – до 10 мс.

3) Суммация – это возникновение возбуждения в нервном центре при поступлении к нему нескольких допороговых импульсов, каждый из которых в отдельности не может возбуждения (рис. 2). Фактически этот процесс происходит на нейронах подпороговой каймы. Различают два вида суммации: пространственную и временною .

Пространственная суммация возникает в том случае, когда к нервному центру (к его нейронам) приходят одновременно, несколько допороговых импульсов. На рисунке 2А видно, что к нейрону подпороговой каймы, имеющему пороговый потенциал 30 мВ одновременно по пяти различным афферентным входам (их аксоны обозначены сплошной линией) приходят пять импульсов, каждый из которых деполяризует мембрану нейрона на 5 мВ (то есть возникают пять отдельных ВПСП). В этом случае возбуждение нейрона не наступает, так как суммарная деполяризация мембраны нейрона составляет лишь 25 мВ (суммированный ВПСП мал для достижения КУД). Но если к нейрону придет еще один подобный импульс по шестому входу (его аксон обозначен пунктирной линией), то суммированный ВПСП будет достаточен по величине и мембрана нейрона в зоне аксонного холмика деполяризуется до критического уровня, в результате чего нейрон из состояния покоя перейдет в состояние возбуждения. На постсинаптической мембране происходит суммация ВПСП в пространстве.

Временная (последовательная) суммация возникает в том случае, когда к нейронам нервного центра по одному афферентному входу приходит не один, а серия импульсов с очень небольшими по времени межимпульсными промежутками (рис. 2Б). Два механизма временной суммации:

1) интервалы между отдельными импульсами настолько малы, что за это время медиатор, выделившийся в синаптическую щель, не успевает полностью разрушиться и вернуться в пресинаптический аппарат. В этом случае возникает постепенное накопление медиатора до критического объема, необходимого для возникновения достаточного по амплитуде ВПСП, а значит, и для возникновения ПД;

2) интервалы между отдельными импульсами настолько малы, что возникший за это время на постсинаптической мембране ВПСП не успевает исчезнуть и усиливается за счет новой порции медиатора – суммируется. На постсинаптической мембране происходит суммация ВПСП во времени.

4) Облегчение – это увеличение количества возбужденных нейронов в нервном центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному, а по двум или более афферентным входам. На рис. 3 рассмотрен случай, когда при отдельном раздражении первого афферентного входа возбуждается только три нейрона центральной зоны (А), а на пяти нейронах подпороговой каймы (Б) возникают ВПСП. Если раздражать отдельно только второй афферентный вход, то возбуждены будут пять нейронов (Г), а четыре нейрона подпороговой каймы (Д) не возбудятся. Раздражая и первый, и второй афферентные входы одновременно (!), мы ожидаем вовлечения в процесс возбуждения восьми нейронов. И они, естественно, будут возбуждаться, но кроме них (сверх ожидания!) могут возбуждаться еще некоторые нейроны подпороговой каймы. Это произойдет потому, что один или несколько нейронов подпороговой каймы являются общими как для первого, так и для второго афферентных входов (в нашем случае это два нейрона, обозначенные буквой В), и при одновременном поступлении возбуждения к этим нейронам дни возбудятся за счет возникновения пространственной суммации.

5) Окклюзия – это уменьшение количества возбужденных нейронов в нервной центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному. а по двум или более афферентным входам (рис. 4).

На рис. 4 видно, что при поступлении возбуждения только по первому афферентному входу возбуждаются четыре нейрона, а при раздражении только второго афферентного входа – пять нейронов, так как и в том, и другом случае они относятся к центральным зонам. Понятно, что при одновре­менном поступлении возбуждения по первому и второму входам мы ожидаем увидеть девять возбужденных нейронов, но на самом деле таких нейронов будет только восемь. Это произойдет потому, что нейрон, обозначенный буквой В, является общим для обоих входов и по закону «все или ничего» будет возбуждаться в любом случае независимо от того, сколько пороговых импульсов к нему прилет одновременно.

6) Мультипликационное возбуждение (мультипликация ) заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение поступает одновременно не на один, а на несколько моторных нейронов (рис. 6). В связи с этим эффект на рабочем органе усиливается в несколько раз, или в работу вовлекаются не одна, а несколько рабочих структур, Это свойство особенно ярко проявляется в ганглиях автономной (вегетативной) нервной системы.

7) Трансформация ритма возбуждения – это изменение частоты импульсов на выходе из нервного центра по сравнению с частотой импульсов на входе в нервный центр.

Частота импульсов на выходе из нервного центра может быть значительно меньше, чем на входе. Говоря техническим языком, это «понижающая трансформация». Подобное явление мы уже рассматривали выше («временная суммация»).

Частота импульсов на выходе из нервного центра может быть значительно выше, чем на входе («повышающая трансформация»). Это связано с особенностями взаимосвязи вставочных нейронов:

а) наличием дублирующих цепей вставочных нейронов, связывающих сенсорные и моторные нейроны;

б) разным количеством синапсов в каждой из этих цепей.

Например, на рис.7 представлены два варианта трансформации, которые, на первый взгляд, не отличаются друг от друга, так как в том и в другом случае показаны две дополнительные цепи вставочных нейронов (кроме прямого пути), с помощью которых возбуждение может передаваться по цепи нейронов А-Б-В. Рассмотрим эти схемы.

Вариант 1. Верхняя цепь состоит из двух дополнительных вставочных нейронов, а значит, по сравнению с прямым путем передачи возбуждения с нейрона Б на нейрон В, имеет два дополнительных синапса. Поэтому возбуждение, проходя по верхней цепи, задержится на 2 мс (время синаптической задержки в одном синапсе составляет ~1 мс) и придет на нейрон В после того, как пройдет возбуждение по прямому пути. В нижней цепи три дополнительных вставочных нейрона (то есть три дополнительных синапса), значит, возбуждение будет доходить до нейрона В еще дольше, чем по верхней цепи (задержка составит 3 мс). Следовательно, по нижней цепи возбуждение на нейрон В придет после того, как пройдет возбуждение по верхней цепи. В результате на один импульс, пришедший по сенсорному нейрону А, на моторном нейроне В возникнет три потенциала действия (трансформация 1:3).

Вариант 2. В этом случае и верхняя и нижняя цепи вставочных нейронов состоят из двух дополнительных нейронов. Возбуждение по обеим цепям придет к нейрону В одновременно в виде одного потенциала действие, который появится на нейроне В только после прохождения возбуждения к нему от нейрона Б по прямому пути. В этом варианте мы тоже получим трансформацию ритма, но уже в соотношении 1:2.

8) Последействие – это продолжение возбуждения моторного нейрона в течение некоторого времени после прекращения действия раздражителя.

Сущность механизма последействия заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение распространяется на соседние вставочные нейроны и по ним возвращается на первоначальный вставочный нейрон. Возбуждение как бы «запирается» в нейронной ловушке и циркулирует в ней достаточно долго (рис. 8). Наличием таких нейронных ловушек объясняют, в частности, механизм кратковременной памяти.

Другими причинами последействия могут быть:

а) возникновение высокоамплитудного ВПСП, в результате которого возникает не один, а несколько потенциалов действия то есть ответ длится большее время;

б) длительная следовая деполяризация постсинаптической мембраны, в результате чего возникают несколько потенциалов действия, вместо одного.

9) Посттетаническая потенциация (синаптическое облегчение) – это улучшение проведения в синапсах после короткого раздражения афферентных путей.

Если в качестве контроля вызвать одиночное раздражение афферентного нерва тестирующим раздражителем (рис. 9А), то на моторном нейроне мы получим ВПСП вполне определенной амплитуды (в нашем случае 5 мВ). Если после этого тот же афферентный нерв раздражать некоторое время серией частых импульсов (рис. 9Б), а потом вновь подействовать тестирующим раздражителем (рис. 9В), то величина ВПСП будет больше (в нашем случае 10 мВ). Причем она будет тем больше, чем более частыми импульсами мы раздражали афферентный нерв.

Длительность синаптического облегчения зависит от свойств синапса и характера раздражения: после одиночных стимулов оно выражено слабо, после раздражающей серии потенциация (облегчение) может продолжаться от нескольких минут до нескольких часов. Объясняется он тем, что при частом раздражении афферентного волокна в его пресинаптической терминали (окончании) накапливаются ионы кальция, а значит, улучшается выделение медиатора. Кроме того, показано, что частое раздражение нерва приводит к усилению синтеза медиатора, мобилизации пузырьков медиатора, к усилению синтеза белков-рецепторов на постсинаптической мембране и увеличению их чувтствительности. Поэтому фоновая активность нейронов способствует возникновению возбуждения в нервных центрах.

10) Утомление нервного центра (посттетаническая депрессия, синаптическая депрессия) – это уменьшение или прекращение импульсной активности нервного центра в результате длительной стимуляции его афферентными импульсами (или произвольного вовлечения его в процесс возбуждения по­средством импульсов, идущих из коры больших полушарий). Причинами утомления нервного центра могут быть:

Истощение запасов медиатора в афферентном или вставочном нейроне;

Снижение возбудимости постсинаптической мембраны (то есть мембраны моторного или вставочного нейрона) из-за накопления, например, продуктов метаболизма.

Утомляемость нервных центров продемонстрировал Н.Е. Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения п. tibialis и п. peroneus. В этом случае ритмическое раздражение одного нерва вызывает ритмические сокращения мышцы, приводящие к ослаблению силы ее сокращения вплоть до полного отсутствия сокращения. Переключение раздражения на другой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в центральной части рефлекторной дуги. Синаптическая депрессия при длительной активации центра выражается в снижении постсинаптических потенциалов.

11) Тонус нервного центра – это длительное, умеренное возбуждение нервного центра без видимо утомления Причинами тонуса могут быть:

Потоки афферентных импульсов, постоянно поступающие с неадаптирующихся рецепторов;

Гуморальные факторы, постоянно присутствующие в плазме крови;

Спонтанная биоэлектрическая активность нейронов (автоматия);

Циркуляция (реверберация) импульсов в ЦНС.

12) Нервный центр состоит из нейронов, а они очень чувствительны к изменению состава внутренней среды организма , что и отражается на свойствах нервных центров. Наиболее важными факторами, влияющими на работу нервных центров, являются: гипоксия; недостаток питательных веществ (например, глюкозы); изменение температуры; воздействие продуктов метаболизма; воздействие различных токсических и фармакологических препаратов .

Разные нервные центры имеют неодинаковую чувствительность к воздействию названных факторов. Так, нейроны коры больших полушарий наиболее чувствительны к гипоксии, недостатку глюко­зы, продуктам метаболизма; клетки гипоталамуса – к изменению температуры, содержанию глюкозы, аминокислот, жирных кислот и др.; различные участки ретикулярной формации выключаются разными фармакологическими препаратами, различные нервные центры избирательно активируются или тормозятся разными медиаторами.

13) Пластичность нервного центра означает его способность изменять при определенных обстоятельствах свои функциональные свойства. В основе этого явления лежит поливалентность нейронов нервных центров. Особенно ярко проявляется это свойство при всевозможных повреждениях ЦНС, когда организм компенсирует утраченные функции за счет сохранившихся нервных центров. Особенно хорошо свойство пластичности выражено в коре больших полушарий. Например, центральные параличи, связанные с патологией двигательных центров коры, иногда полностью компенсируются, и ранее утраченные двигательные функции восстанавливаются.

Чтобы формулировать кратко свойства нервных центров, сперва нужно разобраться с базовым понятием. Под НЦ принято понимать такую сложную систему, сформированную многочисленными нейронами, которая создана из связанных меж собою элементов. НЦ имеет строго определенную биологическую функцию. В области ответственности этого органического образования - переформатирование возбуждения, получаемого на входе, в иной поток, отличающийся характеристиками, на выходе.

Тут или там?

Понятие о нервном центре, свойствах нервных центров во многом обусловлены односторонним режимом работы. НЦ обеспечивает передвижение возбуждающих импульсов только посредством промежуточных звеньев к двигательному нерву, откуда далее данные направляются к органу, ответственному за исполнение сигнала. Такая система работы базируется на особенностях синаптического механизма перенаправления импульсов. Посредством медиатора между клетками, сведения проходят только в одном направлении. Во многом это связано с тем фактом, что продуцирование медиатора - ответственность аксона, его завершающего элемента. Такое соединение можно встретить лишь в пресинаптической щели.

Физиологические свойства нервных центров во многом обусловлены тем фактом, что импульсный поток, его направление задаются рефлекторной дугой. Благодаря такому устройству ЦНС может координировать деятельность различных структур и систем организма. Связи, обеспечивающие рефлексы, условные реакции, именно благодаря такому строению НЦ имеют функцию замыкания.

Спешим к цели

Рассматривая свойства нервных центров и их особенности, необходимо упомянуть о замедленном процессе проводимости касаемо возбуждения. В медицине эту специфическую черту назвали центральной задержкой. Альтернативное наименование - рефлекторный латентный временной промежуток. Подобная логика работы НС связана с тем фактом, что синапсы проводят импульсы относительно медленно.

С момента раздражения рецептора до получения реакции ответа проходит до половины секунды, но не менее двух десятых долей этого временного промежутка. Центральная задержка увеличивается, если необходимо произвести сложный рефлекс.

Такие свойства и функции нервных центров особенно важны для лиц, работающих в области дрессировки. Формируя у подопытной особи условный рефлекс, нужно помнить о латентном временном промежутке и использовать раздражитель, подкрепляющий ответ, через полсекунды с момента первичного влияния. Если объект болен или сильно устал, продолжительность рефлекторного ответа растет.

И сразу, и потом

Анализируя свойства нервного центра и их характеристику, необходимо упомянуть одну особенность. Если имел место относительно короткий факт, спровоцировавший раздражение, ответный эффект, вызываемый им, будет достаточно продолжительным. Рефлекторный ответ продолжается уже после прекращения воздействия на рецепторы. Последействие, как удалось выяснить ученым, спровоцировано способностью центрами получать импульсы через рецепторы в разные временные промежутки, поскольку используются разнообразные пути. Некоторые требуют больше времени, другие - меньше.

Описанное свойство нервных центров обусловлено наличием запаздывающей импульсной реакции. Благодаря такой специфической особенности возбужденность сохраняется на некоторое время (вплоть до двух секунд) дольше, что влияет на качество замыкательной функции, повышая ее.

Наиболее важно это при необходимости формирования условного рефлекса у объекта, с которым работает специалист. Так, если стоит задача дрессировки животного, следует учитывать нужду в предоставлении некоторого временного промежутка для устранения остаточного возбуждения. Это позволяет очистить пути рефлексов, подготовив НС для обновления деятельности.

Все под учетом

Как известно из физиологии, свойство нервных центров - суммация. Это такое явление, при котором слабые раздражения постепенно накапливаются. Речь идет о таких раздражителях, влияния которых недостаточно, чтобы перешагнуть порог чувствительности. В определенный момент накопление многочисленных явлений становится достаточным, чтобы потенциал стал критическим, и нервный центр возбуждается. Суммация различается по времени и пространству.

В последнем случае о суммации говорят, когда несколько чувствительных участков оказываются под влиянием слабых раздражителей, по отдельности не переступающих порог, свойственный организму. Как объясняет физиология, свойства нервных центров проявляют себя так, что происходит суммирование, провоцирующее возбуждение, одновременно учитываются все слабые импульсы некоторого участка.

Касаемо времени, суммация предполагает последовательное воздействие на один нейрон. То есть один за другим следуют слабые импульсы, каждый из которых не в силах спровоцировать возбуждение, но происходит наложение, в силу чего значения складываются, достигая уровня, достаточного для возбуждения элемента НС.

Это любопытно

Нервные центры не обладают свойством различения временного и пространственного суммирования эффектов раздражителей, недостаточных для самостоятельного преодоления порога. Оба процесса сложения в организме происходят параллельно, за счет чего эффект усиливается.

Именно по такой логике становится выше чувствительность собак к запахам и звукам. Это важно, когда животное обучают работать по чутью, что вынуждает его улавливать очень слабые - молекула на литр атмосферных газов - запахи. Несмотря на невозможность активизации рецептора столь слабым раздражителем, эффект суммации позволяет отметить запаховые ощущения, за чем следует рефлекторная ответная реакция.

От А к Б

Среди прочих свойств нервных центров суммация - далеко не единственное, заслуживающее пристального внимания. Не менее важна и трансформация. Это такая особенность, в силу которой НЦ может усилить или ослабить импульс, а также скорректировать частоту.

Работает это следующим образом: нейроны активизируются, некоторые структуры перестраиваются, меняя ритмичность работы, лабильность. Это дает возможность эффективного взаимодействия, одновременно с чем между НЦ появляются доступные для передачи информации связи. Формируются связи с различными отделами НС. Такой эффект особенно важен для ветеринаров, специалистов по дрессировке животных. Известно, что он помогает замыкать рефлекторные, условные связи, что делает процесс обучения животным более эффективным.

Проще и сложнее

Изучая основные свойства нервных центров, следует уделить внимание особенности, благодаря которой реализуется высокий уровень возбудимости при эффективном ответе НС через рефлекс. Речь идет об облегчении - такой специфической реакции, за счет которой повторное раздражение требует большей силы влияния. Это справедливо, если между отдельными импульсами есть небольшие временные промежутки. Первый импульсный поток словно бы облегчает второй. Такая логика позволяет формировать стойкий условный рефлекс.

Еще одно важное, причисленное к основным, свойство нервной системы - проторение. Один НЦ может положительно влиять на возбудимость других. Обменные процессы, импульсная передача - методы взаимодействия НЦ меж собою. Для этого используются нейронные пути.

Формирование временной связи при этом становится итогом взаимного влияния друг на друга очагов возбуждения, инициируется проторение меж пунктами коры пути. Проходимость маршрута во многом зависит от синапсов, изменений, которые эти структуры претерпевают. Это касается и морфологии, и функций элементов.

Иррадиация

Если исследовать сформулированные в современной науке понятия нервного центра, основные свойства нервных центров, известные ученым, то придется особенное внимание обратить на ситуацию, когда НС подвержена продолжительному раздражению достаточно высокой силы. В такой ситуации активизируются не только центры, через которые происходит первичная обработка сведений, но постепенно происходит распространение на близлежащие структуры. Чем больше сила влияния, тем большее число центров будет охвачено процессом.

Отличительное свойство нервных центров связано с ситуацией, когда одновременно возбужденными оказываются сразу большое их количество. Сложные ЦНС устроены таким образом, что происходит автоматический отбор самых значимых НЦ, между которыми формируются стойкие связи на базе функциональности. Они и становятся условными рефлексами.

Преимущественно рефлекторное условное поведение - это двигательные реакции, спровоцированные иррадиацией. Будучи слишком сильным, такой эффект приводит к неуравновешенности реакций организма, а рефлекторная активность нарушается. В нормальном, здоровом организме противоположный иррадиации процесс - торможение - позволяет ограничить распространение возбуждения, уравновесить состояние НС.

Приводим в норму

Торможение - такое свойство нервных центров, благодаря которому активность НС скоординирована, адекватна. Подобный ответ провоцируется в структурах НС при наличии волнового возбуждения, подавляющего иные формы. Торможение сопровождается угнетением активности органов, не требующейся в настоящий момент времени.

Такая система обеспечивает организму эффективную защиту, предупреждая перенапряжение. НС становится местом продуцирования различных условных рефлексов, связанных с угнетением возбужденного состояния. Живое существо при этом осваивает выдержку, учится дифференцировать объекты, сигналы. Вырабатывается прекращение на рефлекторном уровне недопустимых, нежелательных поступков.

Главное и второстепенное

Еще одно важное свойство нервных центров - доминанта, то есть ситуация, когда одни НЦ в плане активности более значимы, нежели иные. Наиболее важный очаг формируется, если тому способствует функциональное состояние НЦ. Если присутствуют гуморальные, нервные факторы, провоцирующие высокий уровень возбудимости клеток НС конкретного центра, появляется доминирующий очаг. Суммирование провоцирует повышение уровня возбудимости доминанты, при этом угнетенные НЦ влияют на активную зону, за счет чего рефлексы становятся сильнее.

Инстинктивное доминирование - такое свойство нервного центра, которое может растянуться на продолжительный временной промежуток. Во многом именно от этого зависит, как будет вести себя объект испытаний. Нередко доминанту фиксируют, исследуя рефлекторную условную деятельность. Возбужденный мозговой центр становится объектом притяжения нервных импульсов других участков. Это провоцирует эффект суммации, формируются пути связей, наблюдается замыкание, облегчение. Особенно заметно это при наблюдении за реакциями животного, работающего с опытным дрессировщиком.

Теории Павлова и практика

Доминанта - свойство НЦ, привлекшее особенное внимание академика И. Павлова. В своих работах этот ученый отмечал, что доминирующий центр - это ключевой аспект формирования условного рефлекса, проявления наработанной реакции. Если рассматривать собаку как объект исследования, то следует отметить стойкость сформированных реакций. Ответ НС доминирует относительно прочих рефлекторных реакций, благодаря чему можно управлять животным даже в присутствии раздражителей, способных отвлекать его внимание. В настоящее время эти выкладки обширно применяются в работе дрессировщиков. Доминантные очаги учитываются при подготовке к работе собак различных пород.

Подойдешь поближе?

Еще одной свойство НЦ, выявленное учеными, получило наименование «конвергенция». Возбуждающие импульсные энергетические потоки, проходя по чувствительным траекториям, сходятся в двигательном, промежуточном центре. Одна из особенностей ЦНС - увеличенное приблизительно впятеро количество чувствительных дорожек в сравнении с числом двигательных. За счет этого возбуждающие импульсы в один центр могут прийти разными траекториями. Конвергенция по своей сути противоположна иррадиации.

На основании этой особенности НС возбуждение может концентрироваться в конкретном участке мозговой коры. Конвергенция - залог специализации условной рефлекторной реакции. Благодаря такой особенности НС становится возможным сформировать навык ответа на комплексный, сложный раздражающий внешний аспект.

Ни туда ни сюда

Не менее значимой считается окклюзия. Это свойство проявляет себя, если одновременно НЦ сталкиваются с достаточно сильными раздражающими факторами, суммарный эффект которых оказывается меньше, нежели ответ на каждый из аспектов сам по себе. Фактически это суммация с отрицательным знаком.

Суммация по пространственному эффекту и окклюзия - свойства, меж которыми наблюдается тесная связь. Если возбуждение достаточно слабое, реакция обусловлена суммацией как основным свойством НЦ, а при усилении выше определенной границы проявляется окклюзия.

На практике связь этих двух качеств НЦ нередко становится причиной ошибок людей, работающих с животными. При дрессировке некоторые пытаются использовать излишне сильные раздражители, чтобы стимулировать формирование условного рефлекса. Вместо этого, в реальности, повышенная громкость голоса или очень сильное подкрепление становится причиной слабости условной рефлекторной реакции.

Подлежит корректировке

НЦ - объекты, чья функциональность довольно пластична, может перестраиваться по прошествии времени при наличии стимулирующих к этому условий. Акты рефлекторного поведения, обусловленные эволюционным процессом, поведенческие реакции, инстинктивные поступки со временем меняются, а НЦ корректируются. Как показали многочисленные опыты, посвященные этому вопросу, у животных в головном мозге НЦ могут меняться, если есть советующее воздействие на кору органа.

На практике это свойство проявляется в способности подстраиваться поведенческими реакциями под условия внешней среды. Собака и кошка, к примеру, могут вполне нормально, мирно сосуществовать в одном доме. Инстинктивно собака по следам ищет дикое животное, но под влиянием внешней среды этот рефлекс заменяется на способность обнаружения по запаху предмета, принадлежащего хозяину. Если животное имеет неправильные поведенческие связи, дурные привычки, исправить их можно, постоянно применяя дрессировочные методики, подходы. НЦ пластичны, благодаря чему обучение дает хорошие результаты: появляются достаточно сложные навыки, формируются динамические стереотипы.

Стабильность - залог успеха

От природы НЦ - инертные структуры, которые возбуждаются, если раздражающий фактор воздействует достаточно продолжительно. И если возбуждение произошло, состояние сохраняется. В работах академика И. Павлова это качество было обозначено инертностью. Наиболее сильно такое свойство выражено в клетках, формирующих собой кору мозговых полушарий.

Ученые придерживаются мнения, что именно инертность - качество мозга, обеспечивающее человеку и другим высокоорганизованным существам способность помнить, учиться, вырабатывать привычки и рефлексы. Память делится на продолжительную и кратковременную, но оба этих вида нужны, чтобы сформировались навыки, рефлекторные реакции. При исследовании собак было выявлено, что кратковременная - память, чья длительность составляет лишь несколько минут, а вот второй ее тип проявляет себя через дни и годы. В восприятии животного раздражители и объекты репродуцируются образами.

Введение

1.1 Свойства нервных центров

1.2 Торможение в ЦНС

2. Патологические нарушения высшей нервной деятельности. Истерия. Неврастения. Психастения.

2.1 Высшая нервная деятельность

2.2 Патологические нарушения высшей нервной деятельности

2.3 Истерия

2.4 Неврастения

2.5 Психастения

Литература

Введение

Цель данной работы - раскрыть классификацию свойств нервных центров, процессов торможения, показать сложность их функционирования и изучения; также раскрыть их роль в функционировании организма, изучить патологические нарушения высшей нервной деятельности, их признаки и причины.

Нервные центры – это совокупность нервных структур, участвующих в регуляции определенных функций организма. Это может быть как и четко очерченная анатомическая структура, так и объединение нейронов по функциональному признаку. Но все они обладают рядом специфических свойств. Обусловленных конструкцией нейронных сетей, структурой и свойствами синапсов.

Проявления функциональной патологии высшей нервной деятельности прежде всего касаются психических функций. Наблюдается ослабление аналитико-синтетической деятельности головного мозга, нарушение долгосрочной и краткосрочной памяти, регуляции эмоций и мотиваций, регуляции общего функционального состояния мозга, межполушарных отношений. Современные представления о механизмах патологии высшей нервной деятельности основываются на учете роли эмоций и памяти; а также гуморальных факторов возникновения патологии.

Знание свойств и патологических нарушений высшей нервной деятельности, помогает правильно осуществлять педагогические воздействия. А также вовремя замечать какие-либо поведенческие отклонения от нормы.

1. Свойства нервных центров. Торможение в ЦНС

1.1 Свойства нервных центров

Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.

Нервный центр - совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структурах. Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований. Рассматриваемые ниже свойства нервных центров объясняются некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являются следующие.

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям). Одностороннее проведение возбуждения характерно не только для химических синапсов, но и для большинства электрических.

2. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций - десятки миллисекунд.

3. Трансформация ритма возбуждения - это способность нервных центров изменять ритм приходящих на входы нейрона импульсных потоков. Различают несколько механизмов этого явления:

Урежение импульсации может быть связано с более низкой лабильностью нейрона приемника, обусловленной длительной фазой его следовой интерполяризации;

Увеличение импульсации объясняется длительной деполяризацией, достигающей критического уровня, что способствует генерации множественных потенциалов действия, а также с включением нейронов в реверберирующие / циркулирующие/ цепи возбуждения.

Аналогичные механизмы имеют место при рефлекторных ответах, в зависимости от силы и длительности раздражения. Увеличение этих параметров стимуляции с одной стороны приводит к включению большего числа нейронов / за счет присоединения к низкопороговым более высокопороговых нейронов/, с другой стороны – к возникновению суммационно-трансформационных преобразований на синаптических аппаратах центральных вставочных нейронов.

4. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция. Временную суммацию также называют последовательной. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

5. Последействие – это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям, причинами последействия являются:

    длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;

    многократные появления следовой деполяризации, что свойственно нейронам ЦНС;

    циркуляция возбуждения по замкнутым нейронным цепям.

Первые две причины действуют недолго – десятки или сотни миллисекунд, третья причина – циркуляция возбуждения – может продолжаться минуты и даже часы. Таким образом, особенность распространения возбуждения обеспечивает другое явление в ЦНС – последействие. Последнее играет важнейшую роль в процессах обучения – кратковременной памяти.

6. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов - в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору. Физические рефлексы вызывают довольно быстрое утомление в нервных центрах, в то время как тонические рефлексы могут протекать, не сопровождаясь развитием утомления. Это позволяет в течение длительного времени поддерживать мышечный тонус, что, в свою очередь, через обратную афферентацию поддерживает тонус нервных центров и обеспечивает постоянную импульсацию к соответствующим периферическим эффектам.

7. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра. Тонус объясняется следующим:

Спонтанной активностью нейронов ЦНС;

Гуморальным влиянием циркулирующих в крови биологически активных веществ, влияющих на возбудимость нейронов;

Афферентной импульсацией от различных рефлексогенных зон;

Суммацией миниатюрных потенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах;

Циркуляцией возбуждения в ЦНС.

Значение фоновой активности нервных центров заключается в обеспечении некоторого исходного уровня деятельного состояния центра и эффекторов. Этот уровень может возрастать или снижаться в зависимости от колебаний суммарной активности нейронов нервного центра-регулятора.

8. Пластичность нервных центров – способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства следующие: посттетаническая потенциация и депрессия, доминанта, образование временных связей, а в патологических случаях – частичная компенсация нарушенных функций.

Посттетаническая потенциация /синаптическое облегчение/ - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения / в начале/; в этом случае феномен называют тетанической потенциацией. Степень выраженности облегчения возрастает с увеличением частоты импульсов; облегчение максимально, когда импульсы поступают с интервалов в несколько миллисекунд,

Длительность посттетанической потенциации зависит от свойств синапса и характера раздражения. После одиночных стимулов она выражена слабо, после раздражающей серии потенциация может продолжаться от нескольких минут до нескольких часов.

Значение синаптического облегчения, по-видимому, заключается в том, что оно создает предпосылки улучшения процессов переработки информации на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки условных рефлексов. Повторное возникновение явлений облегчения в нервном центре может вызвать переход ценра из обычного состояния в доминантное.

Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.

В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

Если раздражение продолжается, то в химических синапсах может наступить депрессия, по-видимому, в следствие истощения медиатора.

Компенсация нарушенных функций после повреждения того или иного центра – результат проявления пластичности ЦНС.

9. Большая чувствительность ЦНС к изменениям внутренней среды: например, к изменению содержания глюкозы в крови, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую очередь реагируют синапсы нейронов. Особенно чувствительны нейроны ЦНС к недостатку глюкозы и кислорода. При снижении содержания глюкозы в 2 раза ниже нормы могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови – от нарушений функций мозга до полной гибели нейронов.

10. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных афферентных входов предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т. е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.

11. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).

Координация в деятельности нервных центров обеспечивается специфическими закономерностями во взаимодействии процессов возбуждения и торможения. При этом торможению отводится часто ведущая роль в достижении координационной деятельности центральной нервной системы.

1.2 Торможение в ЦНС

Торможение - это физиологический процесс в центральной нервной системе результатом которого является задержка возбуждения. Торможение не может распространяться подобно возбуждению, являясь местным процессом. Торможение возникает в момент встречи двух возбуждений, одно из которых является тормозящим, а другое тормозимым.

Процесс торможения впервые был показан в 1862 г. русским физиологом И. М. Сеченовым. У лягушки производился разрезголовного мозга на уровне зрительных бугров с удалением больших полушарий мозга. Измерялось время рефлекса отдергивания задней лапы при погружении ее в растворсерной кислоты(метод Тюрка). При наложении на разрез зрительных бугров кристалликаповаренной соливремя рефлекса увеличивалось. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое спускается к спинномозговым центрам и тормозит их деятельность.

Выделяют первичное и вторичное торможение. Первичное торможение наблюдается при активации специальных тормозных структур, действующих на тормозную клетку и вызывающих в ней торможение как первичный процесс, без предварительного возбуждения. К первичному торможению относятся пресинаптическое, постсинаптическое и, разновидность последнего, возвратное и латеральное торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатералям к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением. Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали. По такому принципу осуществляется торможение мотонейронов.

Параллельное торможение – возбуждение блокирует само себя за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же нейроном.

Латеральное постсинаптическое торможение. Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение. Такого типа торможение называется латеральным потому, что образующаяся зона торможения находится «сбоку» по отношению к возбужденному нейрону и инициируется им. Латеральное торможение играет особенно важную роль в афферентных системах. Латеральное торможение может образовать тормозную зону, которая окружает возбуждающие нейроны.

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в ЦНС были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах ЦНС.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю ЦНС, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением. Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Оба известных вида торможения со всеми их разновидностями выполняют охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов и прекращению деятельности ЦНС.

Еще торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения.

Торможение является важным фактором обеспечения координационной деятельности ЦНС.

2. Патологические нарушения высшей нервной деятельности. Истерия. Неврастения. Психастения

2.1 Высшая нервная деятельность

Высшая нервная деятельность - сложная форма жизнедеятельности, обеспечивающая индивидуальное поведенческое приспособление человека и высших животных к изменяющимся условиям окружающей среды. Понятие "высшая нервная деятельность" введено И. П. Павловым как противопоставление понятию "низшая нервная деятельность", которая осуществляется на основе врождённых механизмов и направлена в основном на поддержание гомеостаза организма в процессе его жизнедеятельности. Нервные связи, лежащие в основе высшей нервной деятельности, формируются в процессе индивидуальной жизни организма и способствуют обогащению приобретённого опыта.

Высшая нервная деятельность человека, её характер в значительной степени зависят от индивидуальных особенностей нервной системы. Совокупность этих специфических черт обусловлена наследственными особенностями индивидуума, его жизненным опытом и традиционно называется типом высшей нервной деятельности. При определении такого типа по И. П. Павлову используют следующие свойства нервной системы: силу процессов возбуждения и торможения, их взаимную уравновешенность (другими словами, соотношение силы торможения и силы возбуждения) и подвижность (т. е. скорость, с которой возбуждение может смениться торможением, и наоборот).

И. П. Павлов выделил четыре основных типа высшей нервной деятельности:

Тип сильный, но неуравновешенный, характеризующийся преобладанием процессов возбуждения над торможением ("безудержный" тип) и обладающий холерическим темпераментом (в соответствии с делением типов людей по темпераментам, предложенным еще Гиппократом);

Тип сильный, уравновешенный, с большой подвижностью нервных процессов ("живой", подвижный тип), совпадающий с сангвиническим темпераментом;

Тип сильный, уравновешенный, с малой подвижностью нервных процессов ("спокойный", малоподвижный, инертный тип), который соответствует флегматическому темпераменту;

Тип слабый, характеризующийся слабым развитием как возбуждения, так и тормозных процессов, относится к меланхолическому темпераменту.

Тип нервной системы определяет степень приспособленности организма к условиям окружающей среды. Так, у животных с сильным уравновешенным типом нервной системы трудно вызвать патологическое расстройство высшей нервной деятельности - невроз, или срыв (по терминологии И. П. Павлова). Особенно частым "поставщиком" различных невротических состояний является слабый тип нервной системы. Причинами возникновения патологических нарушений высшей нервной деятельности могут быть также острые или хронические отравления различными токсическими веществами, инфекции, нарушения функции отдельных органов или систем (дыхательной, пищеварительной, эндокринной и др.), неблагоприятные условия окружающей среды и т. д.

2.2. К патологическим изменениям высшей нервной деятельности

К патологическим изменениям высшей нервной деятельности следует относить длительные хронические ее нарушения, которые могут быть связаны как с органическими структурными повреждениями нервных клеток, так и с функциональными расстройствами их деятельности. Функциональные расстройства высшей нервной деятельности называют неврозами. Длительные функциональные нарушения высшей нервной деятельности могут затем переходить в органические, структурные (А. О. Долин, С. А. Долина, 1972) и становятся необратимыми.

Нервный центр –

это совокупность нейронов, расположенных на различных этажах ЦНС и регулирующих деятельность определённого органа.

В нервном центре выделяют рабочий отдел и надстройку. Надстройка представлена нейронами, расположенными в выше лежащих отделах ЦНС и управляющими деятельность рабочего отдела. Например: центр ССС деятельности состоит из нейронов, расположенных на уровне продолговатого мозга, гипоталамуса и коры головного мозга. Рабочим отделом являются нейроны в области продолговатого мозга. Нейроны в области гипоталамуса и коры головного мозга входят в состав надстройки.

Структурной частью нервного центра является нейрон (Рис.26). Он имеет тело неправильной формы и 2 вида отростков: многочисленные короткие дендриты и одиночный длинный отросток – аксон. По дендриту возбуждение идёт к телу нейрона. По аксону – от нейрона к рабочему органу или другому нейрону.

По функции нейроны делятся на:

  1. Чувствительные – афферентные, расположенные в спинномозговых ганглиях, ядрах черепных нервов, спинном и головном мозге.
  2. Двигательные – эфферентные, находящиеся в коре, подкоркой области, стволе головного мозга, передних рогах спинного мозга.
  3. Ассоциативные – вставочные. Объединяющие, передающие импульсы с афферентного на афферентные нейроны.
  4. Нейросекреторные (например в гипоталамусе). Обладающие свойством вырабатывать и выделять в кровь гормоны, названные нейросекретами.

Место контакта двух нейронов называется СИНАПС.

Его формируют либо разветвление аксона и тело нейрона, либо аксон и дендрит. Строение синапса (Рис.27):

А. Пресинаптичекая мембрана (мембрана, покрывающая окончание аксона в месте контакта).Пресинаптические окончания образуют бляшки, в которых находятся везикулы, содержащие медиатор. С помощью медиатора возбуждение передаётся через синаптическую щель на постсинаптическую мембрану.

Б. Синаптическая щель (расстояние между пре и постсинаптической мембранами 20 – 40 н/м.). В период возбуждения в синаптической щели появляются адгезивные белки, которые фиксируют положение пре и постсинаптических мембран и способствуют точной передачи медиатора.

В. Постсинаптическая мембрана (часть мембраны нейрона, содержащая рецепторы к медиатору). Медиаторы могут быть различными и возбуждающими и тормозными. Постсинаптическая мембрана является частью постсинаптической плотности, куда входят 1000-1500 белков (арматурные белки, белки цитоскелета, актомиозин).

Механизм передачи возбуждения в синапсе

(на примере медиатора ацетилхолина). Импульс возбуждения, подошедший к пресинаптической мембране, увеличивает её проницаемость для ионов кальция, который входит в синаптическую бляшку, связывается с белком и возникает выброс медиатора из бляшки. Квант медиатора проходит через синаптическую щель, контактирует с рецетором постсинаптической мембраны, увеличивает частично её проницаемость для ионов натрия и вызывает частичную деполяризацию на 3-5 мв. (возбуждающий постсинаптический потенциал или ВПСП). Чтобы получить возбуждение в нервном центре, необходимо суммировать 3-5 таких ВПСП для достижения критического уровня деполяризации (Рис.28). Для этого необходимо к пресинаптической мембране подвести минимум три импульса возбуждения и выбить 3 кванта медиатора.

Потенциал действия возникает в аксонном холмике нейрона.

Генерация потенциала действия в нейроне прекращается ретрограднеой сигнализацией (Рис.29). Во время возбуждения нейрона активируются дополнительно метаботропные рецепторы, которые увеличивают проницаемость постсинаптической мембраны для ионов кальция. Кальций, попав в цитоплазму нейрона, активирует фосфолипазу, которая выщепляет арахидоновую кислоту из мембраны. Из неё образуется медиатор 2-АГ

(2-арахидоноилглицерин), который транспортируется через синаптическую щель назад к пресинаптической мембране, находит для себя рецептор КБ-1 (канабиоидные). Возбуждение этих рецепторов блокирует ток кальция в пресинаптической мембране и медиатор из везикул не выделяется. Генерация потенциала действия в нейроне прекращается. Таким механизмом регуляруется частота нервных импульсов в нейроне.

СВОЙСТВА НЕРВНОГО ЦЕНТРА

  1. Односторонняя передача возбуждения в синапсе (от пре к постсинаптической мембране). В обратном направлении передача невозможна, ибо медиатор содержится только в пресинаптических бляшках, а рецептор к нему только на постсинаптической мембране.
  2. Синаптическая задержка. В синапсе передача возбуждения задерживается на 0,6 – 0,8 сигм (1 сигма=0,001 сек.). Время уходит на выделение медиатора, транспорт его через синаптическую щель, контакт с рецептором и суммацию ВПСП.
  3. Суммация ВПСП.

А. Последовательная , когда последователь по времени суммируются ВПСП.

Б. Пространственная (одновременная). На одном нейроне может контактировать несколько аксонов. Из каждого одновременно выделится по кванту АХ, которые сразу вызовут падение мембранного потенциала в нейроне до критического уровня (Рис.30).

  1. Высокая утомляемость нервного центра .

При длительном действии раздражителя расходуется АХ в пресинаптической области и не возбуждается постсинаптическая мембрана. Восстанавливается работоспособность утомлённого нервного центра за счёт отдыха. Он может быть активным и пассивным. Пассивный отдых. Когда ничего не делая ожидается время синтеза достаточного количества АХ в пресинаптической бляшке. Активный отдых. Для этого необходимо заняться другим видом работы и подключить к возбуждению параллельную рефлекторную дугу. От неё по коллатерали возбуждение подойдёт к утомлённому нервному центру и выбросит в синапс недостающее количество АХ. ВПСП одновременно будет суммироваться на нейроне из нескольких синапсов. Этот вид отдыха более продуктивен, восстановление трудоспособности наступает быстрее, чем при пассивном отдыхе (Рис.31).

  1. ТРАНСФОРМАЦИЯ ритма . Нервный центр может изменять число нервных импульсов, подошедших к нему в область пресинаптичеческих бляшек, увеличивая или уменьшая частоту (трасформируя). Поэтому трансформация может быть как поышающая, так и понижающая. ПОНИЖАЮЩАЯ – возникает за счёт суммации ВПСП
  1. ПОСЛЕДЕЙСТВИЕ – способность нервного центра генерировать возбуждение после действия раздражителя. Это может быть связано с действием гуморальных раздражителей, способных вызывать деполяризацию или с наличием возвратных коллатералей. По ним импульсы возвращаются к нейрону и его возбуждают (Рис.34).
  1. ВЫСОКАЯ ЧУВСТВИТЕЛЬНОСТЬ нервного центра к биологически активным веществам (БАВ). В крови существуют соединения, способные увеличивать проницаемость мембраны нейрона к ионам натрия, вызывая деполяризацию. При небольшой их концентрации возникает частичная деполяризация, что определяет тонус нейрона и его готовность к ответной реакции. Это важно для поддержания гомеостаза в организме. При высокой концентрации БАВ в крови может возникнуть самовозбуждение нейронов без действия раздражителей.

Нервный центр обладает высокой чувствительностью к недостатку кислорода. Нейроны коры головного мозга способны существовать без кислорода не более 3-5 минут и этим определяется длительность клинической смерти. Нейроны нижележащих отделов ЦНС могут существовать без кислорода несколько дольше.

  1. НИЗКАЯ ЛАБИЛЬНОСТЬ нервного центра. Лабильность – это функциональная активность. К нервному центру подходит до 500 импульсов, а он может пропустить 100-120 импульсов. Это связано с последовательной суммацией ВПСП, когда частота импульсов теряется. Низкая лабильность предохраняет рабочий орган от перегрузок.

Учение о рефлекторной деятельности ЦНС привело к развитию представления о нервном центре.

Нервным центром называют совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции той или иной функции.

Не следует понимать нервный центр как что-то узко локализованное в одном участке ЦНС. Понятие анатомическое по отношению к нервному центру рефлекса неприменимо потому, что в осуществлении любого сложного рефлекторного акта принимает участие всегда целая констелляция нейронов, расположенных на разных этажах нервной системы. Опыты с раздражением или перерезкой ЦНС показывают лишь, что отдельные нервные образования обязательны для осуществления того или иного рефлекса, а другие необязательны, хотя и участвуют при обычных условиях в рефлекторной деятельности. Примером служит дыхательный центр, в который в настоящее время включают не только "центр дыхания" продолговатого мозга, но и пневмотаксический центр моста, нейроны ретикулярной формации, коры и мотонейроны дыхательных мышц.

Нервные центры обладают рядом характерных свойств, определяемых свойствами составляющих его нейронов, особенностями синаптической передачи нервных импульсов и структурой нейронных цепей, образующих этот центр.

Свойства эти следующие:

1.Одностороннее проведение в нервных центрах можно доказать при раздражении передних корешков и отведении потенциалов от задних. В этом случае осциллограф не зарегистрирует импульсов. Если поменять электроды - импульсы будут поступать нормально.

2.Задержка проведения в синапсах. По рефлекторной дуге проведение возбуждения происходит медленнее, чем по нервному волокну. Это определяется тем, что в одном синапсе переход медиатора к постсинаптической мембране происходит за 0,3-0,5 мсек. (т.н. синаптическая задержка). Чем больше синапсов в рефлекторной дуге, тем больше время рефлекса, т.е. интервал от начала раздражения до начала деятельности. С учетом синаптической задержки проведение раздражения через один синапс требует около 1,5-2 мсек.

У человека наименьшую продолжительность имеет время сухожильных рефлексов (оно равно 20-24 мсек). У мигательного рефлекса оно больше - 50-200 мсек. Время рефлекса складывается из:

а) времени возбуждения рецепторов;

б) времени проведения возбуждения по центростремительным нервам;

в) времени передачи возбуждения в центре через синапсы;

г) времени проведения возбуждения по центробежным нервам;

д) времени передачи возбуждения на рабочий орган и латентного периода его деятельности.

Время "в" носит название центрального времени рефлекса.

Для упомянутых выше рефлексов оно составляет соответственно 3 мсек. и 36-180 мсек. Зная центральное время рефлекса, и учитывая, что через один синапс возбуждение проходит за 2 мсек., можно определить число синапсов в рефлекторной дуге. Например, коленный рефлекс считают моносинаптическим.


3. Суммация возбуждений. Впервые Сеченов показал, что в целостном организме рефлекторный акт может осуществляться при действии подпороговых стимулов, если они действуют на рецепторное поле достаточно часто. Такое явление получило название временной (последовательной) суммацией. Пример - рефлекс чесания у собаки можно вызвать, если подать в одну точку подпороговые стимулы с частотой 18 гц. Суммация подпороговых стимулов можно получить и тогда, когда они прикладываются на разные точки кожи, но одновременно - это пространственная суммация.

В основе этих явлений лежит процесс суммации возбуждающих постсинаптических потенциалов на теле и дендритах нейронов. При этом происходит накопление медиатора в синаптической щели. В естественных условиях оба вида суммации сосуществуют.

4. Центральное облегчение. Возникновение временной и особенно пространственной суммации способствуют и особенности организации синаптического аппарата в нервных центрах. Каждый аксон, поступая в ЦНС, ветвится и образует синапсы на большой группе нейронов (нейронный пул, или нейронная популяция ). В такой группе принято условно различать центральную (пороговую) зону, и периферическую (подпороговую) кайму. Нейроны, находящиеся в центральной зоне, получают от каждого рецепторного нейрона достаточное количество синаптических окончаний для того, чтобы ответить разрядом ПД на приходящие импульсы. На нейронах же подпороговой каймы каждый аксон образует лишь небольшое число синапсов, возбуждение которых не способно возбудить нейрон. Нервные центры состоят из большого числа нейронных групп, причем отдельные нейроны могут входить в разные нейронные пулы. Это объясняется тем, что на одних и тех же нейронах оканчиваются разные афферентные волокна. При совместном раздражении этих афферентных волокон возбуждающие постсинаптические потенциалы в нейронах подпороговой каймы суммируются друг с другом и достигают критической величины. В результате в процесс возбуждения оказываются вовлеченными и клетки периферической каймы. При этом сила рефлекторной реакции суммарного раздражения нескольких "входов" в центр оказывается больше арифметической суммы раздельных раздражений. Этот эффект и носит название центрального облегчения.

5. Центральная окклюзия (закупорка). Может наблюдаться в деятельности нервного центра и обратный эффект, когда одновременное раздражение двух афферентных нейронов вызывает не суммацию возбуждения, а задержку, уменьшение силы раздражения. В этом случае суммарная реакция меньше арифметической суммы раздельных эффектов. Происходит это потому, что отдельные нейроны могут входить в центральные зоны разных нейронных популяций. В таком случае появление возбуждающих постсинаптических потенциалов на телах нейронов не приводят к увеличению числа

возбужденных одновременно клеток. Если суммация лучше проявляется при действии слабых афферентных раздражений, то явления окклюзии хорошо выражены с случае применения сильных афферентных раздражений, каждое их которых активирует большое число нейронов. Более наглядно эти эффекты видны на схемах.

6.Трансформация ритма возбуждений. Частота и ритм импульсов, поступающих к нервным центрам, и посылаемых ими на периферию, могут не совпадать. Это явление носит название трансформации. В ряде случаев на одиночный импульс, приложенный к афферентному волокну, мотонейрон отвечает серией импульсов. Образно говоря, в ответ на одиночный выстрел нервная клетка отвечает очередью. Чаще это бывает при длительном постсинаптическом потенциале и зависит от триггерных свойств аксонного холмика.

Центральное облегчение




© 2024
womanizers.ru - Журнал современной женщины