16.06.2019

Введение рекомбинантной днк в клетку. Раздел "генная инженерия" Методы введения днк в клетку


Процесс введения рекомбинантной ДНК в бактериальную клетку называется трансформацией . Результатом трансформации является приобретение клеткой-хозяином новых последовательностей ДНК и, следовательно, новых фенотипических признаков, например - устойчивости к определенным антибиотикам. Клетка-хозяин, используемая в таких экспериментах, должна иметь определенный фенотип, в частности r - , т.е. в ней не должно быть ферментов рестрикции; онадолжна быть неспособна к общей рекомбинации (recA -) , чтобы экзогенная ДНК не модифицировалась в результате гомологичной рекомбинации. Одна из самых широко используемых для этих целей культур – это лабораторный штамм бактерий E.coli – штамм К12.

Клетки, способные поглощать чужеродную ДНК, называются компетентными. Компетентность E. coli необходимо индуцировать, а некоторые другие бактерии обладают этим свойством изначально. Долю компетентных клеток можно повысить, используя специальную питательную среду или условия культивирования. Для бактерий, устойчивых к химическим индукторам компетентности или не обладающих природной компетентностью, применяются другие системы доставки ДНК.

Самыми часто применяемыми в лабораторной практике приемами трансформации бактериальных клеток являются:

Трансформация E.coli с помощью обработки хлоридом кальция;

электропорация – увеличение проницаемости клеток под воздействием импульса тока длительностью ~4,5 мс;

Результаты трансформации можно оценивать количественно: определяя либо частоту , либо эффективность трансформации.

Частота трансформации – доля клеток в клеточной популяции, получивших чужеродную ДНК; выражается числом трансформантов к общему числу клеток.

Эффективность трансформации - число трансформантов в расчете на 1 мкг ДНК, взятой для трансформации.

Информация по клонированию рекомбинантных ДНК с помощью плазмидного вектора pBR322, изложенная в данном разделе, суммирована в виде схемы эксперимента и представлена на рисунке 20.

Рис. 20. Клонирование ДНК в плазмидном векторе pBR322

1, 2, 3, 4 и 5 – этапы процедуры клонирования (см. текст).

1. ДНК pBR322 разрезают эндонуклеазой рестрикции PstI в участке, определяющем устойчивость к ампициллину.

2. Фрагменты донорной ДНК, также полученные с помощью PstI и имеющие липкие концы, как и линеаризованный вектор pBR322, с помощью ДНК-лигазы сшивают с векторной ДНК. Следствием образования такой конструкции является деструктурирование гена, обеспечивающего устойчивость к ампициллину. Таким образом, созданная рекомбинантная ДНК при введении в клетки E.coli не сможет обеспечить им выживание на среде с ампициллином.

3. Клетки E.coli трансформируют рекомбинантной ДНК.

4. Суспензию клеток после проведения процедуры трансформации высевают на чашки с агаром и питательной средой, содержащей антибиотик тетрациклин. На этом этапе происходит селекция, т.е. отбор клеток, которые способны расти на среде с тетрациклином. Выросшие на этом агаре клетки содержат рекомбинантную ДНК и ДНК pBR322, в которую не встроилась вставка донорной ДНК, т.е. восстановилась первоначальная структура вектора.

5. Индивидуальные колонии клеток E.coli , выросшие на чашке с тетрациклином пересевают на чашки две чашки, одна из которых содержит агар с ампициллином, а вторая – с тетрациклином. Клетки, содержащие рекомбинантную плазмидную ДНК, растут только на агаре с тетрациклином, поскольку ген, обеспечивающий устойчивость к ампициллину у них деструктурирован за счет встраивания донорной ДНК. В то время как клетки с исходной, т.е. восстановленной векторной ДНК pBR322 растут на обеих чашках, поскольку гены устойчивости к обоим антибиотикам находятся в нативном, т.е. в исходном состоянии.

Из клеток отобранных клонов E.coli экстрагируют плазмидную ДНК и анализируют ее структуру.

Другие плазмидные векторы

Эпоха вектора pBR322, начатая Боливаром и Родригесом в самом начале 80-тых годов ХХ-го столетия, продолжается и по сей день. Однако, при всей своей надежности и классическом соответствии всем необходимым для векторов требованиям, этот вектор имеет всего несколько удобных сайтов для клонирования. Кроме того, отбор трансформированных клеток в экспериментах с рекомбинантными ДНК на его основе занимает много времени. Возникла необходимость разработки альтернативных, более совершенных, систем клонирования. Так была создана группа векторов семейства pUC. В названии векторов этого семейства буквы ”U” и “C” – это первые буквы от слов University of California . Исследователями этого университета была создана серия векторов, имебющих важную черту– наличие в структуре ДНК встроенного синтетического полилинкера , который представляет собой последовательность нуклеотидов, составленную из сайтов узнавания ряда эндонуклеаз рестрикции, уникальных для данного вектора - MCS (Multiple Cloning Sites). Названия индивидуальных векторов из семейства pUC отличаются двузначным числом, а первичная структура разных векторов отличается составом сайтов MCS MCS – Multiple Cloning Sites в полилинкере.

Рассмотрим подробнее особенности векторов, входящих в эту группу, на примере вектора pUC19 (рис. 21).

Плазмида pUC19 имеет длину 2686 п. н. и содержит: ген устойчивости к ампициллину; регулируемый сегмент гена β-галактозидазы (lacZ") лактозного оперона E.coli, ген lacI, кодирующий репрессор, который контролирует экспрессию гена lacZ"; полилинкер - короткую последовательность с множеством уникальных сайтов узнавания для эндонуклеаз (EcoRI, SacI, КрпI, ХmаI, SmaI, BamHI, XbaI, SalI, HinсII, AccI, BspMI, PstI, SphI и HindIII); точку начала репликации плазмиды ColE1.

Рис. 21. Плазмидный вектор pUC19

Объяснение к карте дано в тексте.

Присутствие в плазмиде pUC19 гена, обеспечивающего устойчивость к ампициллину, позволяет отбирать клоны E.coli, содержащие данный вектор или рекомбинантные ДНК на его основе на питательных средах с этим антибиотиком. Такие модульные элементы структуры рассматриваемого вектора как lacZ" , lacI и MCSдают возможность ускорить и интенсифицировать процедуру селекции клонов с рекомбинантными ДНК.

Если клетки, содержащие немодифицированную плазмиду pUC19, выращивать в присутствии изопропил-β-D-тиогалактопиранозида (ИПТГ), который является индуктором lac- оперона, то продукт гена lacI, так называемый репрессор , не сможет связаться с промоторно-операторной областью гена lacZ", и как следствие будут происходить транскрипция и трансляция плазмидного фрагмента гена lacZ". Продукт этого фрагмента свяжется с белком, кодируемым хромосомной ДНК (α-комплементация ), и в результате образуется активная ß-галактозидаза. Последовательность с множеством сайтов рестрикции (полилинкер) встроена в ген lacZ" так, что она не влияет на продукцию функциональной β-галактозидазы, и если в среде присутствует ее субстрат 5-бром-4-хлор-3-индолил-β-D-галактопиранозид (X-Gal), то он будет гидролизоваться под действием этого фермента с образованием продукта синего цвета, окрашивающего колонии клеток, содержащих немодифицированную, т.е. без вставки чужеродной ДНК, плазмиду pUC19 (рис. 22).

Рис. 22. Последовательность процедур клонирования ДНК в векторе pUC19.

1, 2, 3 и 4 – этапы клонирования (см. текст)

1. Донорную ДНК обрабатывают одной из эндонуклеаз рестрикции, для которой имеется сайт в полилинкере. Векторную ДНК pUC19 обрабатывают тем же ферментом

2. Лигирование линеаризованного вектора и вставки с помощью ДНК-лигазы Т4.

3. После процедуры лигирования инкубационной смесью проводят трансформацию клеток, способных к α-комплементации, которые могут синтезировать ту часть ß-галактозидазы (LacZα), которая соединяется с продуктом гена lacZ" с образованием активного фермента.

4. Обработанные клетки высевают на питательную среду с ампициллином, ИПТГ и субстратом для ß-галактозидазы. Нетрансформированные клетки не могут расти в присутствии ампициллина, а клетки, несущие интактную плазмиду, образуют на среде с ампициллином колонии синего цвета. Клетки-хозяева, несущие гибридную, т.е. рекомбинантную, плазмиду, образуют на той же самой среде белые колонии. Это связано с тем, что обычно при встраивании в полилинкер чужеродной ДНК не может образовываться полноценный продукт гена lacZ" , и, следовательно, в процессе α-комплементации не образуется активная ß-галактозидаза, расщепляющая субстрат X-Gal до продукта, который и обеспечивает окрашивание клеток колоний в синий цвет.

Векторы на основе бактериофага λ

Плазмидные векторы позволяют клонировать фрагменты ДНК, размеры которых не превышают 10 т.п.н. Однако для решения задачи клонирования хромосомной ДНК даже небольшого организма, например – бактерии, необходимо создавать полные коллекции фрагментов этой ДНК, поэтому часто приходится работать с более крупными фрагментами. Для этого были разработаны векторы на основе бактериофага λ Ε. coli.

При проникновении фага λ в клетки E.coli. существуют два альтернативных пути развития событий:

1. Литический цикл – фаг начинает активно размножаться и примерно через 20 минут клетка разрушается с высвобождением до 100 новых фаговых частиц.

2. Состояние лизогении – фаговая ДНК включается в хромосому E.coli как профаг и реплицируется в клетке вместе с нормальными бактериальными клетками. Однако при неблагоприятных условиях (нехватка питания) запускается литический цикл (рис. 23):

1. При репликации кольцевой ДНК бактериофага λ образуется линейная молекула, состоящая из повторяющихся сегментов длиной примерно 50 т.п.н. Каждый из этих сегментов представляет собой полноразмерную фаговую ДНК, фланкированную липкими cos -сайтами - одноцепочечными 5"-«хвостами» из 12 нуклеотидов. Их называют липкими (cos ) концами, поскольку они взаимно комплементарны и могут спариваться друг с другом подобно липким концам рестрикционных фрагментов.

2. Фаговая головка вмещает один такой сегмент, затем к головке присоединяется уже собранный отросток.


Рис. 23. Литический путь развития бактериофага λ

1 – упаковка в головку фага одного сегмента полноразмерной фаговой ДНК; 2 – сборка полноценной фаговой частицы.

Размер ДНК фага λ составляет примерно 50 т. п. н., причем значительная ее часть (около 20 т. п. н.) несущественна для размножения фага и отвечает за его встраивание в хозяйскую ДНК. В связи с этим возникла идея, что ее можно заменить фрагментом другой ДНК эквивалентного размера. Образующаяся рекомбинантная молекула будет реплицироваться в клетке как ДНК «рекомбинантного" фага, “вставшего" на литический путь развития. Рекомбинантные молекулы упаковывают в головки бактериофага λ in vitro и после добавления отростков получают инфекционные фаговые частицы (рис. 24).

Рис. 24. Использование векторов на основе фага λ для клонирование фрагментов ДГК в клетках Ε. сoli .

Приготовление экстрактов для осуществления упаковки in vitro ДНК фага λ проводят с помощью двух штаммов E.coli , каждый из которых лизогенен в отношении определенного мутантного штамма фага λ (рис. 25). Один из мутантов не способен синтезировать белок А (один из полипептидов фаговой терминазы), другой – белок Е (белок головки фага). Оба этих белка необходимы для упаковки ДНК фага λ. “А”- и “Е”-экстракты смешивают и добавляют конкатемерную (сегменты полноразмерной фаговой ДНК, полимеризованные по cos -сайтам) ДНК фага, которая связывается с терминазой прежде, чем происходит разрезание в cos -сайтах, и упаковывается в фаговые головки.

Рис. 25. Упаковка in vitro ДНК фага λ

При упаковке молекулы ДНК длиной менее 38 т.п.н. получается неинфекционная фаговая частица, а фрагменты длиной более 52 т, п. н. не умещаются в головку. Сегменты длиной 50 т. п. н. в линейной молекуле ДНК разделены cos-сайтами, и именно по этим сайтам разрезается молекула, когда очередной сегмент заполняет головку. Разрезание осуществляет фермент, находящийся у входа в головку.

Процесс введения рекомбинантной фаговой ДНК со встроенным фрагментом чужеродной генетической информации в клетки-реципиенты основан на естественном природном явлении – трансдукции фаговой ДНК.

Трансдукция (лат. transduction - перемещение) представляет собой процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Таким образом, трансформация бактериальных клеток с помощью рекомбинантных ДНК на основе фаговой ДНК не требует специальной подготовки клеток-реципиентов или какого-либо специального приборного оснащения.

Для поиска клеток, содержащих фаги с рекомбинантными ДНК, используют методы молекулярной гибридизации и иммунологический скрининг, которые рассмотрим в следующем разделе.

Изобретение относится к области биотехнологии, в частности к способу направленной доставки ДНК в опухолевые и стволовые клетки, экспрессирующие рецептор CXCR4. Представленное изобретение может быть использовано для направленной доставки генетических конструкций в стволовые и злокачественные опухолевые клетки с целью коррекции генных дефектов и предотвращения заболеваний. Способ включает подготовку носителей генетических конструкций путем включения в состав молекул носителя, представляющего собой ДНК-связывающую последовательность из восьми остатков аминокислоты лизина - КККККККК, сигнальных последовательностей. Присоединение сигнальной последовательности к ДНК-связывающей последовательности осуществляют с помощью линкерного участка из двух молекул ε-аминогексановой кислоты. После чего осуществляют формирование комплексов ДНК/носитель. Затем проводят трансфекцию in vitro. Предложенное изобретение позволяет повысить эффективность доставки гена интереса в опухолевые и стволовые клетки. 2 з.п. ф-лы, 4 ил.

Изобретение относится к генной медицине, генной терапии, биотехнологии и фармацевтике и может быть использовано для направленной доставки генетических конструкций в стволовые и злокачественные опухолевые клетки с целью коррекции генных дефектов и предотвращения заболеваний. Тканеспецифичность доставки генных конструкций обеспечивается благодаря использованию сигнальных последовательностей к рецептору CXCR4, который экспрессируется в клетках данного типа.

Генную терапию от подходов традиционной медицины отличает ее ориентированность на борьбу с причиной заболевания, а не с симптомами и последствиями. В настоящее время ведется разработка генотерапевтических подходов к лечению или профилактике широкого спектра заболеваний человека. Эти подходы могут быть применимы для терапии in vivo и ex vivo. Терапия in vivo основана на прямом введении генетических конструкций непосредственно в ткани организма. Доставка может осуществляться внутривенно с использованием аэрозольных распылителей или инъекций в определенные ткани. Генная терапия ех vivo основана на выделении специфического типа клеток из организма, введении в них "терапевтической" генной конструкции, отборе трансфецированных клеток и последующей реимплантацией пациенту.

В разрабатываемых в настоящее время подходах к доставке генетических конструкций выделяется три основных направления:

1) клонирование в составе вирусных векторов;

2) использование физических методов трансфекции;

3) использование комплексов плазмидных векторов экспрессии и молекул невирусных носителей.

Вирус-опосредованный перенос является высокоэффективным способом доставки ДНК в клетки-мишени, поскольку проникновение модифицированного вирусного вектора осуществляется аналогично процессу, происходящему в естественных условиях при переносе генома вируса в клетки хозяина. Наиболее изученными являются векторы, созданные на основе ретро-, адено-, аденоассоциированных вирусов. К достоинствам вирусов относится, прежде всего, сочетание в себе свойств вектора экспрессии и носителя, возможность специфичной доставки, способность трансфецировать делящиеся и неделящиеся клетки, возможность встраивания ДНК в хромосому для обеспечения долговременной экспрессии. Благодаря таким преимуществам данный подход до сих пор широко используется в исследованиях по доставки генов, хотя и имеет некоторые недостатки. Ретро- и аденоассоциированные вирусы имеют ограниченный размер клонированного фрагмента ДНК и риск инсерционного мутагенеза при встраивании вируса в геном хозяина. Серьезным недостатком аденовирусных векторов является ярко выраженный иммунный ответ при высоких дозах и повторных введениях аденовирусных конструкций (Walther W., Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human disease // Drugs. - 2000. - v.60. - P.249-271, патент РФ №2252255, C12N 15/37, C12N 15/86, C12N 15/861, C12N 15/867, опубл. 2005.05.20).

Инъекции конструкций "голой" (naked) плазмидной ДНК были одним из первых подходов при разработке стратегий генотерапевтического лечения. Низкая эффективность трансфекции с использованием «голой» ДНК послужила толчком к разработке новых методов доставки генетических конструкций. Изучены различные физические способы доставки ДНК в клетки организма. Наиболее популярными среди них являются метод баллистической трансфекции и электропорация, которые широко применяются для трансфекции клеток кожи и мышц. Метод баллистической трансфекции основан на проникновении в клетку ДНК, осажденной на золотых или вольфрамовых микрочастицах. Трансфекция происходит под давлением потока сжатого газа или жидкости. Метод электропорации основан на локальном изменении электрического потенциала клеточной мембраны вследствие воздействия электрическим током. Электрические импульсы приводят к образованию пор в клеточной мембране, тем самым делая ее проницаемой для биомолекул. Для преодоления низкой эффективности трансфекции голой ДНК in vivo также используют метод гидродинамического шока - внутривенное или внутриартериальное введение плазмидного вектора в растворе большого объема. Основными недостатками существующих физических методов трансфекции являются невысокая эффективность и локальность эффекта доставки ДНК. Они позволяют плазмиде преодолеть клеточную мембрану и избежать включения в эндосомы, предотвращая таким образом энзиматическую деградацию, но, как правило, не обеспечивают длительной персистенции введенных генетических конструкций (Wells D.J. Gene therapy progress and prospects: electroporation and other physical methods // Gene Ther. - 2004. - v.11, №18. - P.1363-1369; Wang S., Joshi S, Lu S. Delivery of DNA to skin by particle bombardment // Methods Mol Biol. - 2004. - v.245. - P.185-196; Herweijer H., Wolff J.A. Progress and prospects: naked DNA gene transfer and therapy // Gene therapy. - 2003. - v.10, №6. - P.453-458).

Невирусные носители являются альтернативой вирус-опосредованному переносу генетических конструкций в клетки млекопитающих. Невирусные носители легко синтезируются, легкость их модификации позволяет вносить изменения в структуру и состав молекул, тем самым совершенствуя средства доставки. При использовании невирусных носителей отсутствуют ограничения на размер доставляемого вектора экспрессии. Кроме того, они менее токсичны, в большинстве случаев не вызывают специфического иммунного ответа и более безопасны в применении in vivo no сравнению с вирусными векторами. Поэтому введение генетической конструкции, упакованной в невирусные носители, может осуществляться повторно. Исследование невирусных носителей развивается в направлении улучшения трансфецирующих свойств плазмидной ДНК путем образования комплексов ДНК с различными синтетическими соединениями (липидами, олиго- и полипептидами, полимерами и др.) (например, патент РФ №2336090, А61К 39/00, A61K 47/00, опубл. 2008.10.20). Совершенствование невирусных средств доставки во многом зависит от детального понимания барьеров на пути проникновения ДНК в клетки организма (Schmidt-Wolf G.D., Schmidt-Wolf I.G. Non-viral and hybrid vectors in human gene therapy: an update // Trends Mol Med. - 2003. - v.9, №2. - P.67-72; Gardlic R, Palffy R, Hodosy J., Turna J., Celec P. Vectors and delivery systems in gene therapy // Med Sci Monit. - 2005. - v.11, №4. - P.110-121; Wiethoff C.M., Middaugh C.R. Barriers to nonviral gene delivery // J Pharm Sci. - 2003. - v.92, №2. - P.203-217).

Считается, что невирусный носитель должен обладать следующими характеристиками:

1) быть нетоксичными, компактизовать и защищать плазмидную ДНК от ферментативной деградации, выводиться из организма после использования;

2) обеспечивать проникновение плазмиды в клетку путем специфического связывания с плазматической мембраной клетки:

3) обладать способностью к высвобождению ДНК из эндосомального компартмента;

обеспечивать диссоциацию ДНК из комплекса для последующего транспорта плазмиды в ядро.

Для целей генотерапии наиболее предпочтительным способом доставки генетических конструкций является их тканеспецифичный перенос в клетки и ткани организма.

Первым барьером на пути внутриклеточного проникновения комплексов является плазматическая мембрана. Большинство комплексов взаимодействуют с поверхностью клетки с помощью электростатических сил. Возможным механизмом связывания комплексов с клеткой является их взаимодействие с белками клеточной поверхности - гликозаминогликанами. Однако при данном механизме проникновения комплексов отсутствует тканеспецифичный перенос генных конструкций. В то же время проблема тканеспецифичной доставки генетических конструкций актуальна для генной терапии целого ряда заболеваний. Для специфического взаимодействия с клеточной поверхностью в состав комплексов включают лиганды к рецепторам на поверхности клеток. В настоящее время охарактеризован ряд пептидных лигандов интегринов. К ним относится, в частности, трипептидный фрагмент RGD (интегрины присутствуют на поверхности многих клеток), трансферрин (его рецептор обладает повышенной экспрессией в пролиферирующих клетках), асиалоорозомукоид (асиалогликопротеиновый рецептор имеет специфическую экспрессию в гепатоцитах печени).

Для специфической доставки генетического материала в нервные клетки Зенг с коллегами предложили использовать носитель, состоящий из сигнального участка к рецептору TrkA (80-108 аминокислоты из фактора роста нервов) и ДНК-связывающей последовательности из 10 остатков аминокислоты лизина. Данный носитель в присутствии эндосомолитического агента хлороквина, способствующего выходу комплексов из эндосомального компартмента клетки, был способен тканеспецифично доставлять маркерный ген только в клетки с экспрессией рецептора TrkA. Данный носитель можно применять для генотерапевтического лечения различных неврологических заболевания, таких как эпилепсия, болезни Паркинсона и Альцгеймера. Однако он не пригоден для доставки генетического материала в другие типы клеток (Zeng J, Too HP, Ma Y, Luo E, Wang S A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery // J Gene Med 2004; 6: 1247-1256).

Стволовые клетки человека рассматриваются в качестве перспективных агентов для клеточной и генной терапии различных заболеваний человека. В то же время они относятся к одним из наиболее трудно трансфецируемых типов клеток. При генотерапевтическом лечении раковых заболеваний необходимо обеспечить доставку генов непосредственно в опухолевые клетки.

CXCR4 является рецептором фактора миграции стволовых клеток хемокина SDF-1α. CXCR4 экспрессируется в гематопоэтических клетках, эндотелии сосудов, мышечных сателлитных клетках. Отмечен высокий уровень экспрессии данного гена в более чем 20 видах раковых опухолей (рак груди, простаты и др.), а также в мигрирующих стволовых клетках. Рецептор CXCR4 также способен связываться с вирусным хемокином vMIP-II (вирус саркомы Капоши). Таким образом, включение в состав молекул носителя сигнальных последовательностей для связывания с рецептором CXCR4 является перспективным путем создания систем целевой доставки генов в опухолевые и стволовые клетки.

Для доставки генетического материала в клетки, экспрессирующие рецептор CXCR4, Ле Бон с коллегами использовали синтетический лиганд к данному рецептору - AMD3100, который был соединен с полиэтиленимином или катионными липидами. Комплексы генетического материала с данными соединениями не приводили к достоверному повышению эффективности доставки маркерного гена в CXCR4+ клетки по сравнению с соединениями без сигналов. Носители, применяемые Ле Боном, не были эффективными, потому что специфическая доставка с их помощью возможна только при добавлении в среду трансфекции вещества, способствующего интернализации рецептора CXCR4 (форболовый эфир). (Le Bon В, Van Craynest N, Daoudi JM, Di Giorgio C, Domb AJ, Vierling P. AMD3100 Conjugates as Components of Targeted Nonviral Gene Delivery Systems: Synthesis and in Vitro Transfection Efficiency of CXCR4-Expressing Cells. // Bioconjugate Chem 2004, 15: 413-423).

Таким образом, существует необходимость в создании носителя генетических конструкций, способного обеспечить специфическую доставку в CXCR4(+) клетки и не оказывать влияния на близлежащие ткани. Такой способ обеспечивается настоящим изобретением.

В основу изобретения положена задача разработки способа специфической доставки генетических конструкций в клетки, экспрессирующие рецептор CXCR4, в котором за счет использования носителей генетических конструкций, содержащих в своем составе сигнальные последовательности к рецептору CXCR4, достигают повышения эффективности доставки гена "интереса". Важно отметить, что синтез заявляемых носителей может быть осуществлен с помощью любого из известных методов твердофазного пептидного синтеза.

Решение поставленной технической задачи обеспечивается тем, что в способе направленной доставки ДНК в опухолевые и стволовые клетки, экспрессирующие рецептор CXCR4, включающем подготовку носителей генетических конструкций путем включения в состав молекул носителя, представляющего собой ДНК-связывающую последовательность из восьми остатков аминокислоты лизина - KKKKKKKK, сигнальных последовательностей, формирование комплексов ДНК/носитель, проведение трансфекции in vitro, сигнальную последовательность выбирают из группы: фрагмент с 1 по 8 аминокислоту последовательности N-конца белка SDF-1α - KPVSLSYR; фрагмент с 1 по 17 аминокислоту последовательности N-конца белка SDF-1α - KPVSLSYRCPCRFFESH, где 9 и 11 аминокислоты заменены на серин; или фрагмент с 1 по 10 аминокислоту N-терминальной последовательности вирусного хемокина vMIP-II - LGASWHRPDK; присоединение сигнальной последовательности к ДНК-связывающей последовательности осуществляют с помощью линкерного участка из двух молекул ε-аминогексановой кислоты.

При этом сигнальная последовательность может представлять собой фрагмент с 1 по 8 аминокислоту последовательности N-конца белка SDF-1α-KPVSLSYR.

Либо сигнальная последовательность может представлять собой фрагмент с 1 по 17 аминокислоту последовательности N-конца белка SDF-1α - KPVSLSYRCPCRFFESH, где 9 и 11 аминокислоты заменены на серин.

В качестве сигнального участка также может быть использован фрагмент с 1 по 10 аминокислоту N-терминальной последовательности вирусного хемокина vMIP-II - LGASWHRPDK, синтезированный из D-аминокислот.

В качестве компонента, обеспечивающего выход из эндосом комплексов, состоящих из носителей и генетического материала, может быть использован глицерин или хлороквин.

В качестве генетического материала для носителей может быть использована плазмидная ДНК.

Указанный технический результат в предлагаемом изобретении достигается за счет использования в качестве носителя молекул олиголизина - КККККККК (К8), конъюгированных с сигнальными последовательностями к рецептору CXCR4 из белков SDF-1 или vMIP-II, а именно N-концевую последовательность хемокина SDF-1 (с 1 по 8 аа) либо N-концевую последовательность хемокина SDF-1 (с 1 по 17 аа, с заменой 9 и 11 аа на серин) или N-концевую последовательность вирусного хемокина vMIP-II (с 1 по 10 аа в D-конформации). Наличие олиголизина КККККККК в составе носителя позволяет конъюгатам образовывать комплексы с нуклеиновыми кислотами, в частности с плазмидной ДНК, за счет электростатического взаимодействия.

Указанный технический результат достигается тремя вариантами заявляемого носителя.

Указанный технический результат по первому варианту достигается тем, что в носителе short CDP на основе синтетических аналогов хемокина SDF-1, включающем катионную составляющую, представляющую собой олиголизин К8, используемый для конденсации плазмидной ДНК, и лигандную составляющую для взаимодействия с рецептором CXCR4, в соответствии с заявленным изобретением в качестве лигандной составляющей используют фрагмент (1-8 аа) последовательности N-конца белка SDF-1, имеющий структуру KPVSLSYR и обладающий активностью агонистов рецептора CXCR4, а катионная составляющая конъюгата имеет структуру KKKKKKKK и присоединена к лигандной составляющей через спейсер - две молекулы ε-аминогексановой кислоты (Ahx).

Указанный технический результат по второму варианту достигается тем, что в носителе (long CDP) на основе синтетических аналогов хемокина SDF-1, включающем катионную составляющую, представляющую собой олиголизин К8, используемый для конденсации плазмидной ДНК, и лигандную составляющую для взаимодействия с рецептором CXCR4, в соответствии с заявленным изобретением в качестве лигандной составляющей используют фрагмент (1-17 аа; аа9 и аа11 заменены на серин) последовательности N-конца белка SDF-1, имеющий структуру KPVSLSYRSPSRFFESH и обладающий активностью агонистов рецептора CXCR4, а катионная составляющая конъюгата имеет структуру KKKKKKKK и присоединена к лигандной составляющей через спейсер - две молекулы ε-аминогексановой кислоты.

Указанный технический результат по третьему варианту достигается тем, что в носителе (viral CDP) на основе синтетических аналогов белка вируса саркомы Капоши vMIP-II, включающем катионную составляющую, представляющую собой олиголизин К8, используемый для конденсации плазмидной ДНК, и лигандную составляющую для взаимодействия с рецептором CXCR4, в соответствии с заявленным изобретением в качестве лигандной составляющей используют фрагмент (1-10 Daa - синтезированный из D-аминокислот) последовательности N-конца белка vMIP-II, имеющий структуру LGASWHRPDK и обладающий активностью антагонистов рецептора CXCR4, а катионная составляющая конъюгата имеет структуру КККККККК и присоединена к лигандной составляющей через спейсер - две молекулы ε-аминогексановой кислоты.

Все три варианта заявляемого носителя могут быть синтезированы с помощью известных методов пептидного синтеза, например твердофазным Вос-методом (Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide // Journal of the American Chemical Society. 1963. V.85 (14), pp.2149-2154).

Примеры конкретной реализации

Изобретение поясняется с помощью фиг.1, на которой показано изменение интенсивности флуоресценции бромистого этидия при увеличении зарядовых соотношений носитель/ДНК в комплексах short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК. Падение интенсивности флуоресценции свидетельствует о возрастании плотности формировавшихся комплексов. Выход кривых флюоресценции на плато указывает на то, что комплексы достигли плотности, достаточной для гашения флуоресценции бромистого этидия.

На фиг.2 приведена зависимость активности люциферазы в клетках HeLa (CXCR4+) после трансфекции комплексами short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК в присутствии эндосомолитического агента глицерина. В этом случае использовали комплексы, сформированные при следующих зарядовых соотношениях носитель/ДНК: 3/1, 6/1, 9/1, 12/1. В качестве контролей эксперимента служили интактная молекула, ДНК, комплексы ПЭИ/ДНК 1/8 (положительный контроль эксперимента - коммерческий носитель разветвленный полиэтиленимин 25 кДа - ПЭИ) и комплексы, содержащие ДНК и контрольный пептид (СР). СР отличается от носителей в настоящем изобретении отсутствием сигнала связывания с рецептором CXCR4 и по структуре представляет собой олиголизин КККККККК. Эффективность доставки маркерного гена носителями short CDP, long CDP и viral CDP была в 10-100 раз выше, чем контролем СР.

На фиг.3 приведена зависимость активности люциферазы в клетках А172 (CXCR4+) после трансфекции комплексами short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК в присутствии эндосомолитического агента глицерина. Здесь использованы комплексы, сформированные при следующих зарядовых соотношениях носитель/ДНК: 9/1, 12/1. В качестве контролей эксперимента служили интактная молекула ДНК, комплексы ПЭИ/ДНК 1/8 и комплексы, содержащие ДНК и пептид СР. Эффективность доставки маркерного гена носителями short CDP, long CDP и viral CDP была в 10 раз выше, чем контролем СР.

Результаты на фиг.2 и фиг.3 свидетельствуют в пользу специфичности носителей в настоящем изобретении к рецептору CXCR4.

На фиг.4 показана зависимость активности люциферазы в клетках СНО (CXCR4-) после трансфекции комплексами short CDP/ДНК, long CDP/ДНК и viral CDP/ДНК в присутствии эндосомолитического агента глицерина. Использованы комплексы, сформированные при следующих зарядовых соотношениях носитель/ДНК: 9/1, 12/1. В качестве контролей эксперимента служили интактная молекула ДНК, комплексы ПЭИ/ДНК 1/8 и комплексы, содержащие ДНК и пептид СР. Эффективность доставки маркерного гена носителями short CDP, long CDP и viral CDP была практически такой же, как с использованием контроля СР.

Носители с сигналом не способны обеспечить достоверно высокого по сравнению с контролем уровня доставки генетического материала в клетках без экспрессии рецептора.

Осуществление изобретения можно пояснить следующим образом. Задача настоящего изобретения состоит в обеспечении направленной доставки генетических конструкций в клетки с экспрессией рецептора CXCR4 с использованием носителей генетического материала, содержащих сигнальные последовательности к данному рецептору.

На первом этапе проводят образование комплексов одного из воплощений носителя с генетической конструкцией, содержащей ген "интереса". Сформированные комплексы используют для доставки генетического материала в соответствующие клетки-мишени. Анализ эффективности проникновения в клетки оценивают с помощью ферментативных или иммуногистохимических методов.

Формирование комплексов проводят в изотоническом растворе. Предпочтительным является бессолевой буфер НВМ (Hepes-buffered mannitol). Размер образующихся комплексов составляет 170-230 нм.

В качестве генетических конструкций в одном из воплощений используют плазмидную ДНК.

Плазмидная ДНК содержит в своем составе маркерный (luc, lacZ) или терапевтический ген (в зависимости от заболевания), под контролем соответствующих промоторов и энхансеров (CMV, SV40 и др.) и другие элементы, необходимые, например, для репликации в клетки-хозяине или интеграции в геном. При генотерапевтичеком лечении раковых заболеваний могут быть использованы гены HLA-B7, IL-2, IL-4, TNF, IFN, P53, тимидинкиназы и проч.

В другом воплощении в качестве генетической конструкции используют олигонуклеотиды, состоящие из ДНК или РНК небольшого размера, комплементарные специфической последовательности в составе мРНК или ее предшественника для подавления синтеза белкового продукта или выбрасывания из мРНК экзона, несущего мутацию. Сформированные комплексы используют для доставки генетического материала в клетки с экспрессией рецептора CXCR4. Проникновение комплексов с носителем из настоящего изобретения происходит преимущественно с помощью рецептор-опосредованного переноса путем связывания с внеклеточными доменами рецептора CXCR4 и последующей интернализацией рецептора.

Доза носителей и генетического материала определяется индивидуально и зависит от типа клеток, количества рецептора CXCR4 на их поверхности и сложности трансфецирования данных клеток.

Для увеличения эффективности данных носителей трансфекцию клеток предпочтительно проводить с использованием эндосомолитического агента. К ним относятся глицерин, хлороквин и др. Данные вещества добавляют в среду трансфекции непосредственно перед внесением комплексов к клеткам. Они остаются несвязанными с комплексами, поэтому не влияют на их структуру.

В качестве ДНК-связывающей части носителя могут быть использованы пептиды, другие полимерные соединения, липосомы, которые способны к компактизации нуклеиновых кислот. Кроме того, они могут обладать эндосомолитическими свойствами (нет надобности в использовании дополнительного эндосомолитического агента) и в случае, когда это необходимо (например, для доставки терапевтических или маркерных генов), доставлять генетический материал в ядро.

При подборе условий трансфекции они создаются так, чтобы обеспечить наибольшую эффективность доставки. Предпочтительным является инкубация комплексов с клетками в течение 4 часов. Однако можно варьировать это время от 3 до 6 часов. По истечении времени инкубации производят смену среды и оставляют клетки на 24-48 часов (в зависимости от типа клеток и генетического материала) для экспрессии введенных конструкций с геном-интереса или проявления терапевтического эффекта олигонуклеотидов.

Анализ эффективности доставки проводится ферментативными или иммуногистохимическими методами в зависимости от типа введенной генной конструкции.

Пример 1. Формирование комплексов ДНК/носитель и изучение процесса комплексообразования.

В качестве генетического материала для направленной доставки генов в клетки была использована плазмида pCLUC4, содержащая ген люциферазы светляков под контролем промотора цитомегаловируса. Использовали одно из воплощений носителя.

Приготавливали растворы 1 мкг ДНК в 40 мкл 1X буфера НВМ (5% w/v mannitol, 5 mM Hepes, pH 7.5) и растворы носителя, соответствующие различным зарядовым соотношениям ДНК/носитель, в равном объеме буфера. В пробирку-эппендорф с раствором ДНК постепенно добавляли раствор носителя и интенсивно перемешивали в течение 20 секунд. Полученную смесь оставляли на 30 минут при комнатной температуре для завершения процесса формирования комплексов.

Результаты по комплексообразованию анализируют методом вытеснения бромистого этидия. Измерение флуоресценции этидиум бромида производят с помощью спектрального сканирующего мультирежимного считывающего устройства Varioscan Flash (Thermo, Finland). Наблюдается вытеснение бромистого этидия при излучении 590 нм (возбуждение при 544 нм) после добавления носителя к ДНК (20 мкг/мл), преинкубированной с интеркалирующим агентом бромистым этидием (400 ng/ml). Вытеснение было посчитано по формуле (F-Ff)/(Fb-Ff), где Ff и Fb - это интенсивности флюоресценции бромистого этидия в отсутствие и присутствии ДНК соответственно Результаты представлены на фиг.1.

Пример 2. Проведение трансфекции in vitro.

Клетки культуры HeLa, A172 и СНО рассевали на культуральные 48-луночные планшеты (Nunc) за 24 часа до трансфекции из расчета 50000 клеток на лунку, содержащую 500 мкл стандартной культуральной смеси, состоящей из культуральной среды DMEM (GIBCO), 10% сыворотки эмбрионов коров (GIBCO), 2 мМ глютамина, с добавлением пенициллина (50 U/мл), стрептомицина (50 мкг/мл) и 1 мМ содиум пирувата. Суспензию комплексов приготавливали согласно методике, описанной в примере 1 из расчета 2 мкг ДНК на каждую лунку культурального планшета. За 10 минут до внесения суспензии комплексов ДНК/носитель клетки несколько раз промывали средой DMEM и вносили в каждую лунку по 500 мкл среды, содержащей 15% глицерин и 1,5% этанол. Трансфекцию проводили путем добавления суспензии комплексов ДНК/носитель в среду. После внесения комплексов планшеты с клетками помещали в термостат с температурой 37°С и 5% содержанием CO 2 на 4 часа. По прошествии времени инкубации клетки промывали средой DMEM и вносили в каждую лунку по 500 мкл стандартной культуральной смеси. Культуральный планшет инкубировали в термостате при температуре 37°С и 5% содержанием СО 2 в течение 48 часов, после чего проводили выявление экспрессии маркерного гена.

Пример 3. Выявление экспрессии гена люциферазы после трансфекции in vitro.

Удаляли среду из культуральных планшетов, промывали клетки в 1х PBS (рН 7.2). В каждую лунку добавляли по 80 мкл лизис буфера (25 MM Gly-Gly, 15 мМ MgSO 4 , 4 мМ EGTA, 1 мМ DTT, 1 мМ PMSF; pH 7.8). По 50 мкл лизата переносили в полистироловые планшеты с непрозрачными стенками для измерения активности люциферазы. Измерение проводили с помощью спектрального сканирующего мультирежимного считывающего устройства Varioscan Flash (Thermo, Finland). Измерение проводили с использованием раствора luciferase flash mix (20 мМ Tricine, 1.07 мМ (MgCO 3) 4 Mg(OH) 2 × 5 H 2 O, 2.67 мМ MgSO 4 , 0 1 мМ EDTA, 33.3 мМ DTT, 530 мкМ АТР, 270 мкМ ацетил коэнзима А, 470 мкМ люциферина). Каждое измерение выполнялось в течение 10 секунд. Показания прибора получали в относительных световых единицах (RLU). Результаты эксперимента оценивали в относительных световых единицах на 1 мг тотального белка из клеточных экстрактов в лунке культурального планшета. Общее количество белка в каждой лунке измеряли с помощью protein assay kit (Bio-Rad), относительно калибровочной кривой по бычьему сывороточному альбумину. Результаты представлены на фиг.2, 3, 4.

Все методы получения ГМО делят на прямые (безвекторные) и непрямые (векторные).

Все прямые способы получения трансгенных животных имеют ряд существенных недостатков : трудоемкость, использование дорогостоящего оборудования и реактивов, зачастую случайная встройка молекул ДНК в геном клеток трансформируемых животных, большое количество гибнущих после трансформации клеток, мозаичность по введенному трансгену.

Значительным преимуществом использования прямых методов является довольно высокая эффективность переноса чужеродной ДНК, то есть удается перенести трансген в большее, чем при непрямых методах, количество клеток.

Требования к векторной ДНК, ее состав

Вектор - молекула ДНК или РНК, состоящая из двух компонентов: векторной части (носителя) и клонируемого чужеродного гена . Задача вектора - донести выбранную ДНК в клетку-рецепиент, встроить ее в геном, позволить идентификацию трансформированных клеток, обеспечить стабильную экспрессию введенного гена.

Таким образом, вектор должен быть небольшим, способным поддерживаться в клетке-хозяине (реплицироваться), многократно копироваться (ампфлицироваться), экспрессировать соответствующий ген (содержать соответствующие регуляторные последовательности), должен иметь маркерный ген, позволяющий различать гибридные клетки для эффективной селекции их; должен быть способен передаваться в клетку соответствующего организма.

Вместе с геном интереса в клетку-реципиент вводят маркерные гены , необходимые для определения трансгенности организма.

Можно выделить 2 группы маркерных генов, позволяющие отличить трансформированные клетки:

  • 1. Селективные гены, отвечающие за устойчивость к антибиотикам (канамицину, тетрациклину, неомицину и др.), гербицидам (у растений). Это могут быть гены ауксотрофности по какому-либо субстрату и т.д. Основной принцип работы такого маркера - способность трансформированных клеток расти на селективной питательной среде, с добавкой определенных веществ, ингибирующих рост и деление нетрансформированных, нормальных клеток.
  • 2. Репортерные гены, кодирующие нейтральные для клеток белки, наличие которых в тканях может быть легко тестировано.

Чаще всего в качестве репортерных используются гены в-глюкуронидазы (GUS), зеленого флюоресцентного белка (GFP), люциферазы (LUC), хлорамфениколацетилтрансферазы (CAT). К настоящему времени из этого арсенала наиболее часто используют гены GUS и GFP и, в меньшей степени, LUC и CAT. Используемый в настоящее время как репортерный ген GUS является модифицированным геном из Escherichia coli, кодирующим в-глюкуронидазу с молекулярной массой 68 кД. GUS активен в широком диапазоне условий среды с оптимумом при рН 5-8 и 37°С. Он может гидролизовать обширный спектр природных и синтетических глюкуронидов, что позволяет подбирать соответствующие субстраты для спектрофотометрического или флюориметрического определения активности фермента, а также для гистохимического окрашивания тканей in situ (например, в синий цвет). Фермент достаточно стабилен: он устойчив к нагреванию (время полужизни при 55°С составляет около 2 ч) и к действию детергентов. В процессе замораживания-оттаивания потери активности GUS не происходит. В составе химерных белков, созданных генно-инженерными методами, GUS обычно сохраняет свою функциональную активность. В живых клетках белок GUS также весьма стабилен и активен от нескольких часов до нескольких суток.

GFP (green fluorescent protein - зеленый флюоресцентный белок, или белок зеленой флюоресценции) был обнаружен Shimomura с соавт. в 1962 г. у люминесцирующей медузы Aequorea victoria. Ген GFP был клонирован в 1992 г. Prasher и соавт., и уже через несколько лет началось активное использование этого гена как репортерного в работах с самыми разными про- и эукариотическими организмами. В настоящее время ген GFP применяется в сотнях работ во всем мире, и число их стремительно нарастает. Столь быстрый рост вызван особыми свойствами белка GFP, а именно его способностью флюоресцировать в видимой (зеленой) области спектра при облучении длинноволновым УФ. Эта флюоресценция обусловлена непосредственно белком, для ее проявления не требуется субстратов или кофакторов. Благодаря этому свойству ген GFP является очень перспективным репортерным геном, позволяющим проводить разнообразные прижизненные (недеструктивные) исследования с трансгенными организмами.

Из морской анемоны Discosoma sp. недавно выделен еще один белок DsRed, флуоресцирующий в красном свете. Еще несколько аналогичных флюоресцирующих белков было выделено в самое последнее время учеными Российской академии наук из различных коралловых полипов порядка Anthozoa. Он может быть денатурирован очень высокой температурой, крайними значениями рН или сильными восстановителями типа Na2SO4. При возвращении к физиологическим условиям GFP в значительной степени восстанавливает способность к флюоресценции. В составе химерных белков, созданных генноинженерными методами, GFP обычно сохраняет свою функциональную активность. В живых клетках белок GFP также очень стабилен.

CAT - гены отвечают за синтез хлорамфениколацетилтрансферазы (выделены из Escherihia coli). Этот фермент катализирует реакцию переноса ацетильной группы от ацетил-КоА к хлорамфениколу. Определяется гистохимически, по изменению окраски ткани при добавлении соответствующего субстрата.

Рекомбинантные ДНК вводятся в клетки – реципиенты. В генной инженерии такие реципиентные клетки играют 2 роли. 1. Они позволяют отыскивать в банке генов клоны синтезируемой рекомбинантной ДНК. 2 Впоследствии такие реципиентные клетки могут использоваться для получения целевых продуктов.

Способ введения рекомбинантной ДНК учитывается на основе вектора какого типа была получена такая рекомбинантная ДНК и в клетки каких организмов необходимо ее ввести путем трансформации клетки или протопласта, или с использованием метода электропорации. Если рекомбинантную ДНК получать на основании фагов, ее можно вводить в изолированную ДНК – это трансвекция. Можно вводить интактные фаговые частицы – это инфекция (космиды, фазмиды).

Др. способы генетического обмена – конъюгация, трансдукция.

В клетках растений – трансформация растительных протопластов, обработка растительных клеток или тканей рекомбинантыми ДНК; широко используются инъекции рекомбинантных ДНК в ядро; использование липосом. Липосомы – сферические структуры, которые имеют липидную оболочку, внутри которой находится рекомбинантная ДНК. Для введения в клетки животных – вирусные инфекции, метод электропорации, микроинъекции в ядро. Если после введения рекомбинантной ДНК все клетки в организме ее наследуют, то говорят о получении трансгенного организма.

Электропорация – клетки или протопласт в течение короткого промежутка времени подвергаются воздействию тока высокого напряжения (2000-4000 вольт). В результате в мембране клетки образуются поры ок. 30 нм, которые могут существовать 1-2 минуты и ч/з которые в клетку могут поступать рекомбинантные ДНК. Затем поры закрываются, а ДНК остается в клетке. Это универсальный способ.

Баллистический метод – применятся преимущественно у эукариот. Используются баллистические пушки в которые вносятся частицы АК или W, на которые напыляются рекомбинантная ДНК. Затем, с помощью инертных газов при Р, такие частицы выстреливаются из пушки в культуру клеток. По различным закономерностям часть частиц попадает в ядро и рекомбинантные ДНК там задерживаются.

Поиск клонов с рекомбинантной ДНК.

Этот этап сложен и непредсказуем.

Самый простой метод – это поиск клонов по фенотипу после введения рекомбинантной ДНК (например пигментация). Можно воспользоваться комплементационными тестами, но необходимо иметь мутантные клетки, дефективные по синтезу активного продукта.

Методы гибридизационные – необходимо наличие специфических меченых ДНК или РНК зондов. Чаще их метят Р 32 . Зондами м. б. короткие олигонуклеотидные последовательности, которые соответствуют наиболее консервативной части отыскиваемого гена. Эти консервативные последовательности могут включать до 100 нуклеотидов для прокариот и до 1000 для эукариот.

После введения рекомбинантной ДНК, формирующиеся на среде колонии, переносятся на специальный нитроцеллюлозный фильтр. Их подвергают лизису и последующей денатурации ДНК с использованием щелочи. ДНК прочно связывается с фильтром. Фильтр промывается и обрабатывается радиоактивным меченым зондом и определяют тот клон с которым этот зонд связался.

Иммунохимические методы – клоны после введения рекомбинантной ДНК лизируют и обрабатывают антителами к соответствующему продукту. Такие антитела – меченые.

Способы прямого введения генов в клетку

Прямое введение гена в клетку осуществляют несколькими способами:

Трансфекция

Микроинъекция

Электропорация

Метод «мини-клеток»

Упаковка в липосомы

Электронная пушка

При трансфекции ДНК адсорбируется на кристаллах фосфата кальция (Грэхем Ван дер Эб, 1973). Образуются частицы кальциевого преципитата. Они поглощаются клеткой путем фагоцитоза.

Для повышения эффективности трансформации к специфической ДНК, содержащей ген, по которому будет производится селекция, добавляется неспецифическая ДНК-носитель. Обычно для этой цели берут ДНК из тимуса теленка или спермы лосося. Часть ДНК связывается с мембраной и не попадает в клетки. ДНК акцептируют от 15 до 90% клеток. Через несколько суток после введения небольшая доля клеток способны экспрессировать чужеродные гены, но затем уровень экспрессии падает и более или менее стабильную трансформацию претерпевает 10 -3 - 10 -5 клеток.

Для трансфекции используется и ДЭАЭ-декстран, полимер, адсорбирующий ДНК. Эффект вхождения в клетки и время экспрессии высоки, но частота стабильной трансформации ниже, чем при использовании преципитата кальция. Частоту трансфекции увеличивает глицериновый шок (4 минуты в 15% растворе глицерина в НEPES-буфере).

В клетки можно вводить любой ген, если заранее лигировать его с клонированным селективным маркером. Однако дальнейшие исследования показали, что лигирование вне клетки не обязательно. Клетки, поглощающие селективный ген, вместе с ним поглощают и другую ДНК, имеющуюся в кальциевом преципитате. Таким образом, пользуясь методом котрансформации , практически любой клонированный сегмент ДНК можно ввести в культивируемые клетки эукариот, если включить эту ДНК вместе с селективным маркером в состав смеси для образования кальциевого преципитата.

Для трансфекции можно использовать хромосомы или фрагменты хромосом. Клетки-доноры блокируются на стадии митоза. Митотические хромосомы высвобождаются под воздействием осмотического шока и гомогенизации. Их очищают путем дифференциального центрифугирования. Хромосомы осаждают на поверхности клеток хлористым кальцием, а через несколько часов обрабатывают реагентом, способным перфорировать мембраны (например, глицерином).

Для обработки клеток-рецепиентов используются грубо очищенные препараты хромосом, так как хромосомы при этом разрушаются меньше всего. Количество хромосом для обработки 1 клетки ограничено. Лучше использовать не более 20 хромосом на 1 клетку-рецепиент, так как при высоких концентрациях хромосом в суспензии они агглютинируют. Рецепиентная клетка содержит фрагменты донорных хромосом, которые могут встраиваться в геном, могут реплицироваться самостоятельно. Во введенных фрагментах часто наблюдаются делеции.

Не все клетки способны к трансформации геномной ДНК с высокой частотой. Человеческие фибробласты эффективно включают плазмидную ДНК и почти не включают геномную.

Микроинъекция ДНК в клетки млекопитающих стала возможной с появлением прибора для изготовления микропипеток диаметром 0.1-0.5 микрона и микроманипулятора (рис. 45). Так, плазмиды, содержащие фрагмент вируса герпеса с геном тимидинкиназы (ТК) и плазмиду рВR322, были инъецированы в ТК - -клетки и было показано, что ТК - ген проник в ядра и нормально в них реплицировался. Метод введения ДНК с помощью микроинъекций был разработан в начале 70-х годов Андерсоном и Диакумакосом. В принципе, при наличии хорошего оборудования можно за 1 час инъецировать 500-1000 клеток, причем в лучших экспериментах в 50% клеток наблюдается стабильная интеграция и экспрессия инъецированных генов. Преимущество описываемого метода заключается также в том, что он позволяет вводить любую ДНК в любые клетки, и для сохранения в клетках введенного гена не требуется никакого селективного давления.

Рис. 45. Введение ДНК путем микроинъекции

Электропорация основана на том, что импульсы высокого напряжения обратимо увеличивают проницаемость биомембран. В среду для электропорации добавляют клетки и фрагменты ДНК, которые необходимо ввести в клетки (рис. 46). Через среду пропускают высоковольтные импульсы (напряжение 200 - 350 В, длительность импульса 54 мс), приводящие к образованию пор (электропробой) в цитоплазматической мембране, время существования и размер которых достаточны, чтобы такие макромолекулы, как ДНК, могли из внешней среды войти в клетку в результате действия осмотических сил. При этом объем клетки увеличивается.

Напряженность электрического поля и продолжительность его действия, концентрации трансформирующей ДНК и реципиентных клеток для каждой системы клеток подбирают экспериментально, с тем чтобы достичь высокого процента поглощения ДНК выжившими клетками. Показано, что в оптимальных условиях электропорации количество трансформантов может достигать 80% выживших клеток.

Электропорация - физический, а не биохимический метод, и это, по-видимому, обусловливает его широкое применение. Многочисленные исследования продемонстрировали, что электропорация может успешно использоваться для введения молекул ДНК в разные типы клеток, такие как культивируемые клетки животных, простейшие, дрожжи, бактерии и протопласты растений. Электропорирующий эффект высоковольтного разряда на бислойную липидную мембрану, по-видимому, зависит от радиуса ее кривизны. Поэтому мелкие бактериальные клетки эффективно поглощают ДНК при значительно большей напряженности (10 кВ/см и более), чем крупные животные и растительные клетки, эффективно поглощающие ДНК при напряженности поля 1-2 кВ/см.

Электропорация - наиболее простой, эффективный и воспроизводимый метод введения молекул ДНК в клетки. Однако до недавнего времени этот метод использовался в ограниченном числе лабораторий в связи с отсутствием серийных приборов - электропораторов. Появление и совершенствование таких приборов в ближайшие годы приведет к широкому применению данного подхода в генетической инженерии самых разных типов клеток.


Рис. 46. Метод электропорации

«Мини-клетки» получают путем блокирования донорных клеток митозе колцемидом. При продолжительной обработке клеток колцемидом в них вокруг каждой хромосомы формируется новая ядерная мембрана. Обработка цитохалазином В и центрифугирование приводит к образованию мини-клеток, представляющих микроядра, инкапсулированные в цитоплазматическую мембрану.

Полученные мини-клетки очень чувствительны к разного рода воздействиям, поэтому для слияния подбирают специальные мягкие условия. Метод трудный, капризный, эффективность низкая – 10 -6 – 10 -7 .

Упаковка в липосомы используется для защиты экзогенного генетического материала от разрушающего действия рестриктаз.

Липосомы - сферические оболочки, состоящие из фосфолипидов. Получают их путем резкого встряхивания смеси водного раствора и липидов, либо обрабатывая ультразвуком водные эмульсии фосфолипидов. Липосомы, состоящие из фосфатидилсерина и холестерина наиболее пригодны для введения ДНК в клетки животных и растений. Системы переноса с помощью липосом низкотоксичны по отношению к клеткам.

Метод биологической баллистики (биолистики) является одним из самых эффективных на сегодняшний день методов трансформации растений, особенно однодольных.

Суть метода заключается в том, что на мельчайшие частички вольфрама, диаметром 0,6-1,2 мкм, напыляется ДНК вектора, содержащего необходимую для трансформирования генную конструкцию. Вольфрамовые частички, несущие ДНК, наносятся на целлофановую подложку и помещаются внутрь биолистической пушки. Каллус или суспензия клеток наносится в чашку Петри с агаризированной средой и помещается под биолистическую пушку на расстоянии 10-15 см. В пушке вакуумным насосом уменьшается давление до 0,1 атм. В момент сбрасывания давления вольфрамовые частички с огромной скоростью выбрасываются из биолистической пушки и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток.

Обычно клетки, располагающиеся непосредственно по центру, погибают из-за огромного количества и давления вольфрамовых частиц, в то время как в зоне 0,6-1 см от центра находятся наиболее удачно протрансформированные клетки. Далее клетки осторожно переносят на среду для дальнейшего культивирования и регенерации.

С помощью биолистической пушки были протрансформированы однодольные растения, такие, как кукуруза, рис, пшеница, ячмень. При этом были получены стабильные растения-трансформанты. Кроме успехов в получении трансгенных однодольных, биолистическая трансформация применяется для прямого переноса ДНК в эмбриогенную пыльцу и дальнейшего быстрого получения трансгенных дигаплоидных растений, которые являются важным этапом в селекционной работе. В настоящее время этим методом была проведена трансформация растений табака и после регенерации гаплоидных растений получены стабильные трансформанты.




© 2024
womanizers.ru - Журнал современной женщины